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1 Applications of group theory

In the past, mathematicians studied extrinsic properties of groups rather than intrinsic
properties. As we’ll see in the following theorem, every finite group can be “embedded” as
an isomorphism to some subgroup of the symmetric group Sn. Today, we focus less on the
properties of Sn and more on the properties of groups at a general level.

Theorem 1.0.1: Cayley’s Theorem

Every finite group G is isomorphic to a subgroup of Sn for some n ∈ Z. In fact, we
may take n = |G|.

Proof. Consider the action of left multiplication of the group G on the set G. I.e.,
g · x = gx, which is a product in G. Thus we have the permutation representation
ϕ : G → SG

∼= Sn. As an exercise: check that ϕ is injective.

Definition 1.0.2: A representation of a group G is a homomorphism ϕ : G →
GL(V ), which is an invertible linear transformation of a vector space V .

2 Introduction to rings

We’re all familiar with some examples of rings. For example, the real numbers, the complex
numbers, etc. all have addition and multiplication which are compatible via the distributive
law. Now, we’ll formally define it:

Definition 2.0.1: A ring is a set R together with binary operations + and × such
that the following ring axioms hold:
(1) (R,+) is an abelian group.
(2) × is associative.
(3) × distributes over +, i.e., for all a, b, c ∈ R, then we write (a+b)×c = a×c+b×c

and also c× (a+ b) = c× a+ c× b.
(4) We say R has a (multiplicative) identity if there exists 1 ∈ R such that 1 × a =

a× 1 = a for all a ∈ R.
Further, we say R is commutative if × is commutative.

Theorem 2.0.2

Let R be a ring. Then a× 0 = 0× a = 0 for all a ∈ R.
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Proof. We can write the following derivation:

a× 0 = a× (0 + 0)

= a× 0 + a× 0

0 = a× 0

where the last step follows from subtracting a× 0 from both sides of the equation.

Theorem 2.0.3

Let R be a ring. Then (−a)× b = a× (−b) = −ab for all a, b ∈ R.

Theorem 2.0.4

Let R be a ring. The multiplicative identity 1 ∈ R is unique if it exists. Further,
(−1)× a = −a.

Proof. If 1 ∈ R and 1′ ∈ R are multiplicative identities, then 1 = 1× 1′ = 1′ as desired.
Then, note that 0 = 0×a = (1+(−1))×a = 1×a+(−1)×a = a+(−1)×a, so therefore
(−1)× a = −a is the additive inverse.

2.1 Examples of rings

Many of the groups we have discussed previously can also be considered rings with the usual
definition of addition and multiplication: Z, R, C, Q, and Z/nZ are all examples of this. The
group 2Z may also be considered a ring; however, it’s notable that 2Z has no multiplicative
inverse. (This does not violate the ring axioms.)

Definition 2.1.1: Given a ring R, a subring is a subset S ⊆ R such that + and ×
are closed with respect to S and (S,+,×) is also a ring.

Example 1: Given a ring R, let Matn×n(R) be the ring of n × n matrices with entries in
R. This is a good example of a (typically) noncommutative ring.

2.1.1 Polynomial rings

Definition 2.1.2: Given any ring R, define R[x] to be the polynomial ring with
coefficients in R. Formally:

R[x] = {anxn + an−1x
n−1 + · · ·+ a0 : ai ∈ R, n ≥ 0}

where we call an the leading coefficient and n is the degree.
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Addition on the polynomial ring is defined component-wise as follows:

(a0 + a1x+ · · · ) + (b0 + b1x+ · · · ) = (a0 + b0) + (a1 + b1)x + · · ·

Meanwhile, multiplication is defined via distribution. So each term of one polynomial is
multiplied by each term of the other, and then all terms are summed:

(a0 + a1x+ · · · )× (b0 + b1x+ · · · ) = (a0b0) + (a0b1 + a1b0)x+ · · ·

We can extend this to multivariable polynomial rings via induction. Indeed, we’ll write
R[x1, . . . , xn] = (R[x1, . . . , xn−1])[xn] to define polynomial rings with an arbitrary number
of variables.

2.1.2 Trivial rings

Given any abelian group (R,+), define × on R by a× b = 0 for all a, b ∈ R. If (R,+) = {0},
then we have the zero ring. This is the unique ring with an identity 1 = 0. This is also
the only ring which is a group under multiplication. (Some other rings can be made into
multiplicative groups by deleting the additive identity, e.g., R.)

2.1.3 Group rings

Definition 2.1.3: Let G be a groupa and R be a ring. The group ring

RG = {r1g1 + · · · rkgk : ri ∈ R, gi ∈ G}

uses the definition of a “formal sum,” which will be explained briefly.

aDummit and Foote requires that |G| be finite, but this is not strictly necessary.

As before, addition behaves component-wise:

(r1g1 + · · ·+ rkgk) + (r′1g1 + · · ·+ r′kgk) = (r1 + r′1)g1 + · · ·+ (rk + r′k)gk

Multiplication may be defined by setting (rg) · (r′g′) = (rr′)(gg′) and extending this defini-
tion via addition.

Definition 2.1.4: A formal sum of elements of G with coefficients in R is a map
of sets f : G → R such that f(g) = 0 for all but finitely many g ∈ G.

Example 2: The formal sum of elements in N = {0, 1, 2, . . .} with R coefficients are natu-
rally in bijection with R[x], which is the set of polynomials with real-valued coefficients.

Given a ring R, we might also consider the Laurent polynomial ring R[x±] = {amxm+ · · ·+
anx

n : m ≤ n} where m,n ∈ Z. For example, the element x−2 + 3x−1 + 5x7 ∈ R[x±] is a
member of the Laurent polynomial ring with real coefficients. Then R[x±] ∼= RZ, which is
the group ring. For example, (x−2) · (x3 + x5) = x+ x3.
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2.2 The structure of rings

But what does it mean to say that R[x±] is isomorphic to RZ? Even though we have defined
isomorphism between groups, we need to re-define the concept of isomorphism for rings. We
can do so with the following definition:

Definition 2.2.1: An isomorphism ϕ : R → S of rings is a bijection ϕ such that:

ϕ(r + r′) = ϕ(r) + ϕ(r′)

ϕ(r · r′) = ϕ(r) · ϕ(r′)

for all elements r, r′ ∈ R. If ϕ is not a bijection, we call this a homomorphism.

Definition 2.2.2: A nonzero element a ∈ R is a zero divisor if ab = 0 or ba = 0
for some b 6= 0.

Definition 2.2.3: An element a ∈ R is a unit if there exists c ∈ R with ac = ca = 1
(in a ring where the multiplicative identity exists).

Example 3: Consider the following groups:

• Z has no zero divisors and units {±1}.
• Z/nZ has units {m̄ : (m,n) = 1} and the zero divisors are non-zero non-units.

Observe that an element a ∈ R cannot be both a unit and a zero divisor. If a is a unit and
ab = 0, then we can show that b = 0. Indeed, let c ∈ R with ca = 1. Then b = (ca)b =
c(ab) = 0 as desired. Hence a is not also a zero divisor.

2.3 Other structures

Definition 2.3.1: A commutative ring with identity 1 6= 0 and no zero divisors is
called an integral domain.

Definition 2.3.2: A field is a commutative ring with identity 1 6= 0 such that every
nonzero element is a unit.

Examples of fields include Q, R, and C.
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2.4 Examples of ring homomorphisms

Recall that a homomorphism ϕ : R → S is a map of sets preserving the structure of addition
and multiplication. For example, consider reduction modulo n: to do so, let n ≤ 1 and:

ϕ : Z → Z/nZ

a 7→ ā

Previously, we checked that a+ b = ā+ b̄ for addition and ab = ā · b̄ for all a, b ∈ Z. This is
sufficient to show that ϕ is a homomorphism.

We might also consider the evaluation homomorphism on polynomial rings:

ev3 : R[x] → R

p 7→ p(3)

As an exercise, check that his is a homomorphism. For example, check that (p + q)(3) =
p(3) + q(3) and similarly for multiplication. A related example expresses R as a subring of
R[x] via the inclusion map defined below:

i : R → R[x]

a 7→ a

Next, we can consider an example of a homomorphism to the product group. However, let
us first re-define the concept of products for rings, even though it is essentially the same as
direct products on groups.

Definition 2.4.1: Given A,B rings, we can define the product A×B as the ring

{(a, b) : a ∈ A, b ∈ B}

with addition and multiplication defined coordinate-wise.

Given this definition, we can define the following homomorphism into a product group:

ϕ : A → A×B

a 7→ (a, 0)

This is a homomorphism. Note that if 1A ∈ A and 1B ∈ B are identities, then (1A, 1B) is
an identity in A×B. Then assuming 1B 6= 0 ∈ B, we have ϕ(1A) as the identity in A×B.

We can define the kernel of a ring based on the underlying group homomorphism, so kerϕ :=
{a ∈ R : ϕ(a) = 0}, i.e., elements sent to the additive identity.

Theorem 2.4.2

Given ϕ : R → S, then imϕ ⊆ S and kerϕ ⊆ R are subrings.

Proof. Check that imϕ and kerϕ are closed under multiplication in S,R respectively.
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Theorem 2.4.3

Let ϕ : R → S be a homomorphism of rings. Then K = kerϕ satsifies:
(1) K is an additive subgroup of R.
(2) Given x ∈ K and a ∈ R, then ax, xa ∈ K.

Proof. Indeed, ϕ(x) = 0 so ϕ(ax) = ϕ(a)ϕ(x) = 0. Similarly for xa.

2.5 Ideals and quotients

Definition 2.5.1: An ideal of a ring R is a subset I ⊆ R satisfying:
(1) I is an additive subgroup.

(2L) I is closed under left multiplication by R. That is, if x ∈ I and a ∈ R, then
ax ∈ I.

(2R) I is closed under right multiplication by R. That is, if x ∈ I and a ∈ R, then
xa ∈ I.

If (1) and (2L) hold, then I is a left ideal. Otherwise, I is a right ideal.

Remark that kerϕ ⊆ R is an ideal for any ϕ : R → S ring homomorphism.

Example 4: Let I ⊆ R[x] be {(x− 3)f(x) : f(x) ∈ R[x]}. Note that I = ker(ev3 : R[x] →
R), so based on the previous remark, I is an ideal.

Are left and right ideals always the same? No, we can consider the ring R = Matn×n(K)
for any field K, e.g., R. Then, let us define:

I =

{[
0 ∗ ∗
0 ∗ ∗

]}

Then I is a left ideal, but not a right ideal. This is because right-multiplication will not
necessarily preserve the left-column of zeros in I.

Definition 2.5.2: Let I ⊆ R be an ideal in a ring R. The quotient ring R/I has
elements {a+ I : a ∈ R} with the following operations:

• (a+ I) + (b+ I) := (a+ b) + I
• (a+ I) · (b + I) := (a · b) + I

To check that the quotient ring is in fact a ring, we need to check the well-definedness of
multiplication as stated above. In particular, given a+ I = a′ + I and b + I = b′ + I, then
we need to check that ab+ I = a′b′ + I. This is equivalent to checking that ab− a′b′ ∈ I:

ab− a′b′ = ab− a′b+ a′b− a′b′

= (a− a′)b+ a′(b − b′)

but since (a− a′), (b− b′) ∈ I, their linear combination must be as well. Therefore multipli-
cation is well-defined as desired.
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2.6 A glorious return to the beloved isomorphism theorems

Theorem 2.6.1: First Isomorphism Theorem for Rings

Given a ring homomorphism ϕ : R → S, then R/ kerϕ ∼= imϕ.

Proof. Let’s define a function f as follows:

f : R/ kerϕ → imϕ

a+ kerϕ 7→ ϕ(a)

Claim that f is well-defined. Indeed, if a+kerϕ = a′+kerϕ, then (a− a′) ∈ kerϕ so we
can write ϕ(a − a′) = ϕ(a) − ϕ(a′) = 0. Note that f is surjective by construction, and
injective since ϕ(a) + ϕ(a′) =⇒ a+ kerϕ = a′ + kerϕ.
Finally, f is a ring homomorphism by the definition of addition and multiplication. E.g.:

f((a+ kerϕ)(b + kerϕ)) = f(ab+ kerϕ)

= ϕ(ab)

= ϕ(a)ϕ(b)

= f(a+ kerϕ) · f(b+ kerϕ)

We can check addition similarly, which is sufficient to prove the theorem.

Definition 2.6.2: If I ⊆ R is an ideal, define the natural projection as follows:

π : R → R/I

a 7→ a+ I

for all a ∈ R. Note that this is a surjective homomorphism (check as exercise).

Remark that the kernel of the natural projection map is ker(π) = {a ∈ R : a+ I = I} = I.
So we’ve realized I, which is an ideal, as the kernel of the natural projection map.

Theorem 2.6.3: Second Isomorphism Theorem for Rings

Let R be a ring. Given a subring A ⊆ R and an ideal B ⊆ R, then:

A+B = {a+ b : a ∈ A, b ∈ B}

is a subring of R and A ∩B is an ideal of A. Then (A+B)/B ∼= A/(A ∩B).

Theorem 2.6.4: Third Isomorphism Theorem for Rings

Let I, J ⊆ R be ideals of a ring R, and say I ⊆ J . Then: (J/I) is an ideal in R/I,
which allows us to write

(R/I)/(J/I) ∼= (R/J)
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Theorem 2.6.5: Fourth Isomorphism Theorem for Rings

Let I ⊆ R be an ideal of a ring R. Then there is a bijective, inclusion-preserving
correspondence between {subrings A of R containing I} and {subrings A/I of R/I}.
Further, A is an ideal of R iff A/I is an ideal of R/I.

2.7 Properties of ideals

2.7.1 Some ways to construct left, right, and two-sided ideals

Let A ⊆ R where R is a ring containing a multiplicative identity. Then, we can construct
the following ideals:

(1) The “smallest” ideal containing A. That is, define I = ∩J where J ⊆ R is an ideal
containing A. Note that 0 ∈ I and I is actually an ideal.

Definition 2.7.1: Given a subset A ⊆ R, the ideal I thus defined is called the
ideal generated by A. We write I = (A).

(2) We may also construct the smallest left ideal containing A. Define RA = {r1a1 + · · ·+
rnan : ri ∈ R, ai ∈ A} to be the inner product whose elements are linear combinations
of elements in A and R. Then RA is a left ideal of the ring R. Indeed, you can check
that the following equality is satisfied:

RA = ∩L

where L ⊆ R is a left ideal containing A. As an exercise: come up with an alternate
description for (A) similar to what we did with left ideals.

2.7.2 Principal ideals

Definition 2.7.2: A principal ideal I ⊆ R is an ideal I = (A) where A has only a
single element. If A = {x} where x ∈ R, then we write I = (x) instead of I = ({x}).

Definition 2.7.3: A finitely generated ideal is an ideal generated by a finite subset.

Theorem 2.7.4

Assume that R is a commutative ring. Given A ⊆ R, we have that RA = (A).

Proof. We need to show that RA = ∩J as above. Note that ∩J ⊆ RA because RA is an
ideal containing A via commutativity. To show RA ⊆ ∩J , take any linear combination
in RA. Since any ideal J containing A must be closed under addition and multiplication
by ring elements, then RA ⊆ ∩J .
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Corollary 2.7.5

If R is commutative and x ∈ R, then the principal ideal (x) = {rx : r ∈ R}.

Now, let’s consider some examples of principal and non-principal ideals:

(1) Principal ideals in Z - the only subgroups of Z are nZ for some n ∈ Z. All these
subgroups are ideals, so all ideals of Z are of the form nZ = (n).

In Z, ({n,m}) = (gcd(m,n)). (cf. midterm exam)

(2) In Z[x], not every ideal is principal. Consider ({2, x}). If ({2, x}) = (p(x)) with p(x) ∈
Z[x], then p has to be a factor of both 2 and x. Thus p = ±1.

But for any q ∈ ({2, x}), q has even constant coefficients. Thus p 6∈ ({2, x}) = (p(x)) is
a contradiction. Hence this is not a principal ideal.

2.7.3 Divisibility in ideals

Definition 2.7.6: Given a, b ∈ R where R is a commutative ring, we say that a
divides b if there exists c ∈ R such that b = ac.

Theorem 2.7.7

Given that a, b ∈ R where R is a commutative ring with a dividing b, we can say:

(a) = {b ∈ R : a divides b}

Theorem 2.7.8

For a, b ∈ R where R is a commutative ring, then (b) ⊆ (a) iff a | b.

2.7.4 Further results about ideals

Assume that R is a ring with 1 6= 0, not necessarily commutative.

Theorem 2.7.9

Let I ⊆ R be an ideal. Then I = R iff I contains a unit.

Proof. If I = R, then 1 ∈ I. If x ∈ I is a unit, then for all r ∈ R, r = (rx−1)x ∈ I.

Theorem 2.7.10

Let I ⊆ R be an ideal. If R is commutative:

[∀x ∈ R− {0}, x is a unit] ⇐⇒ [{ideals of R} = {0, R}]
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Proof. First, suppose that all nonzero elements of the ring have an inverse. Then any
nonzero element is a unit. By the previous theorem, a nonzero ideal I thus equals R.
Inversely, suppose that the only ideals in R are {0, R}. Then take x ∈ R − {0} =⇒
(x) ∈ {0, R}. Since x ∈ (x), (x) 6= 0. Thus (x) = R =⇒ x | 1 is a unit.

2.7.5 Other types of ideals

Definition 2.7.11: Suppose M ⊆ R is an ideal of a ring R. Then we say M is a
maximal ideal if M 6= R and M is not contained by any such ideals.

Note that maximal ideals are not necessarily unique. For example, every pZ ⊆ Z is a
maximal ideal for primes p ∈ Z. Further, these are the only maximal ideals in Z.

Theorem 2.7.12

Let R be a commutative ring. An ideal M ⊆ R is maximal iff R/M is a field.

Proof. By the fourth isomorphism theorem for rings, ideals of R/M correspond with
ideals of R containing M . If M is maximal, then the only ideals containing M are
{M,R}. Thus: {M/M,R/M} are the only two ideals in the quotient ring via the fourth
isomorphism theorem. Any nonzero x ∈ R/M is a unit, so R/M is a field.
To check the inverse direction, suppose R/M is a field. Then all the nonzero elements
are units. By the previous result, this means that the only ideals of R/M are {0, R/M}.
Thus, by the fourth isomorphism theorem, all ideals of R containing M are simply

{π−1(M/M), π−1(R/M)} = {M,R}

Because there are only these two ideals containing M , we can determine that M must
be maximal.

Definition 2.7.13: Let R be a ring, with I ⊆ R a proper ideal. Then I is prime if
for all f, g ∈ R, fg ∈ I =⇒ f ∈ I or g ∈ I.

Recall: we stated that the maximal ideals of Z are pZ for all prime numbers p. The prime
ideals are the same, plus 0, which is not a maximal ideal.

Before stating the next theorems, recall that every field is an integral domain, but the reverse
does not necessarily hold. However, remark that finite integral domains are fields. To see
this, let A be a finite integral domain with element a 6= 0. Then, consider the map of sets

A → A

b 7→ a · b

which must be injective since there are no zero divisors. Due to finiteness, it’s also surjective,
and there must exist a b ∈ A such that a · b = 1. Thus, we have shown that an arbitrary
nonzero element is a unit, so A is a field as desired.
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Theorem 2.7.14

Let S be a commutative ring with a multiplicative identity 1 6= 0. Then S is a field
iff 0 is a maximal ideal of S.

Proof. Note that for all a ∈ S, the following equivalence holds: (a) = S ⇐⇒ ab = 1 for
some b ∈ S, which means that a is a unit. Then, we know that S is a field precisely if
(a) = S for all nonzero a ∈ S. This holds iff 0 is a maximal ideal.

Theorem 2.7.15

Let S be a commutative ring with a multiplicative identity 1 6= 0. Then S is an
integral domain iff 0 is a prime ideal of S.

Proof. S is an integral domain precisely when ∀f, g ∈ S, fg = 0 =⇒ f = 0 or g = 0.
This occurs exactly when 0 is a prime ideal in S.

Theorem 2.7.16

Let R be a commutative ring with 1 6= 0. Say that I ⊆ R is a proper ideal. Then the
following pairs of equivalences hold:
(1a) I is maximal.
(1b) R/I is a field.
(2a) I is prime.
(2b) R/I is an integral domain.
Further, (1a) =⇒ (2a) and (1b) =⇒ (2b).

Proof. First, note that (1a) and (1b) are both equivalent to saying that 0 is a maximal
ideal in R/I per the previously stated theorems and the fourth isomorphism theorem.
Similarly, (2a) and (2b) are both equivalent to saying that 0 is a prime ideal in R/I. Part
of this follows from the previous theorems; it remains to show that I is prime ⇐⇒ 0 is
a prime ideal in R/I. To show this, write f̄ = f + I and ḡ = g + I. Then:

I is prime ⇐⇒ (fg ∈ I =⇒ f ∈ I or g ∈ I)

⇐⇒ f̄ ḡ ∈ 0

⇐⇒ f̄ ∈ 0 or ḡ ∈ 0

⇐⇒ 0 is prime in R/I

In this way, we have shown both pairs of equivalencies. The implicatures from (1a) to
(2a) and from (1b) to (2b) remain to be shown.

Example 5: WTS (x2 + 1) ⊆ R[x] is a maximal ideal. Then define the homomorphism:

ϕ : R[x] → C

p(x) 7→ p(i)

Note that ϕ is surjective and (x2 + 1) ⊆ kerϕ. In fact, kerϕ = (x2 + 1).
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Theorem 2.7.17: Fundamental Theorem of Algebra

Any complex polynomial P factors as a · (x − c1) · · · (x − cn) for a1, c1, . . . , cn ∈ C.
Further, if P ∈ R[x], then complex cis come in conjugate pairs.

We can use this theorem to complete the previous example. By the first isomorphism
theorem, conclude that R[x]/(x2 + 1) ∼= C, so (x2 + 1) is maximal. On the other hand, any
polynomial that can be factored in the reals, e.g., x2 − 3x+ 2 = (x− 1)(x− 2) ⊂ (x− 1).

2.8 Operations on ideals

Let R be a ring, with ideals I, J ⊆ R.

Definition 2.8.1: The sum is I + J = {a+ b : a ∈ I, b ∈ J}.

Note that I + I = I, since this might be unintuitive.

Definition 2.8.2: The product, denoted IJ , consists of all finite sumsa of elements
of the form ab where a ∈ I and b ∈ J .

aDon’t forget the “finite sum” part of this definition!

Definition 2.8.3: The nth power In = I · · · I (n times).

For example, note that I2 = {finite sum of elements of formab with a, b ∈ I}. In general,
we can write R = I0 ⊃ I ⊃ I2 ⊃ I3 ⊃ · · · .

2.8.1 Monomial ideals

Definition 2.8.4: A monomial in R[x, y] is a polynomial of form a·xiyj where a ∈ R
and i, j ≥ 0 are integers. A monomial ideal is an ideal generated by monomials,
e.g., (x3, xy, y2).

Lemma 2.8.5

If I = (m1, . . . ,mn) is a monomial ideal, then a polynomial

f =
∑

i,j≥0

aijx
iyj

is in I iff each of the monomials in f is in I.

For example, f = x4 + 5xy + 6y7 ∈ I since x4, 5xy, 6y7 ∈ I. However, f = x+ y + xy 6∈ I.
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Proof. We’ll show the two separate directions of the equivalence below:
( ⇐= ) Follows from I being closed under addition.
( =⇒ ) Say f =

∑
aijx

iyj ∈ I implies that f =
∑n

i=1 Pi(x, y)mi for some polynomials
Pi. Thus, each monomial appearing in f is a monomial multiple of some mi.

3 Euclidean domains

Definition 3.0.1: Let R be an integral domain. Then a norm on R is any function
N : R → Z≥0 such that N(0) = 0. N is positive if N(a) > 0 for all a 6= 0, a ∈ R.

Definition 3.0.2: An integral domain R is a Euclidean domain if there exists a
norm N : R → Z≥0 such that for all a, b ∈ R with b 6= 0, then a = qb + r for some
q, r ∈ R such that r = 0 or N(r) < N(b).

Consider the following examples of Euclidean domains:

• Z with N(a) = |a|, i.e., integer division with remainders.

• Any field with zero norm (norm function sends all to 0).

• Given any field F , then F [x] is a Euclidean domain with N(p(x)) := degree of p(x).

• Quadratic fields, quadratic integer rings.

3.1 Quadratic fields and quadratic integer rings

Definition 3.1.1: Let D be a square-free integer. The field Q(
√
D) = {a + b

√
D :

a, b ∈ Q} with multiplication is isomorphic to Q[x]/(x2 − D). This is a quadratic

field.

Definition 3.1.2: Inside Q(
√
D), let Z[

√
D] = {a+ b

√
D : a, b ∈ Z}. This is called

a quadratic integer ring.

For example, if D = −1, then Z[
√
−1] = Z[i] is the ring of Gaussian integers.

Definition 3.1.3: We can define the field norm N : Q(
√
D) → Q as follows:

N(a+ b
√
D) : = (a+ b

√
D)(a− b

√
D)

= a2 − b2D

which restricts to N : Z[
√
D] → Z.
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For example: N(a + bi) = (a + bi)(a − bi) = a2 + b2. Now, claim that Z[i] is a Euclidean
domain with respect to this norm.

Theorem 3.1.4

The Gaussian integers are a Euclidean domain.

Proof. Say α = a+ bi and β = c+ di where β 6= 0 and α, β ∈ Z[i]. Write α = (r + si)β
for r, s ∈ Q. Choose p+ qi ∈ Z[i] such that norm((r + si)− p+ qi) ≤ 1

4 + 1
4 = 1

2 . Then:

α = ((r − p)i+ (s− q)i)β + (p+ qi)β

so check that N(((r − p) + (s− q)i)β)

This can be adapted to show that Z[
√
D] is a Euclidean domain for D = −2,−3,−7,−11.

However, Z[
√
−5] is not a Euclidean domain.

Definition 3.1.5: An integral domain R is a principal ideal domain (abbreviated
PID) if every ideal is principal.

Examples of principal ideal domains include Z and K[[x]] (ring of formal power series).
However, Z[x] has a non-principal ideal (2, x) and is not a PID.

Theorem 3.1.6

Euclidean domains are PIDs.

Proof. Let I ⊆ R be an ideal where R is a Euclidean domain with norm N : R → Z≥0.
We want to show that I is principal. Consider two cases:

• If I = 0 = (0), then we have already shown I is principal.
• If I 6= (0), let f ∈ I be a nonzero element with minimum norm. Then, claim that

I = (f). Indeed, we know (f) ⊆ I, so WTS the reverse inclusion. To do so, let
g ∈ I, and have g = qf + r for q, r ∈ R and r = 0 or N(r) < N(f). But r ∈ I since
g, qf ∈ I, so r = 0 by choice of f .

Thus, either I = (0) or I = (f), so every ideal is principal.

Corollary 3.1.7

Once again, every ideal of Z is principal.

Corollary 3.1.8

Z[x] is not a Euclidean domain. (It’s not even a PID!)

Definition 3.1.9: Let R be a commutative ring with a, b ∈ R. Say b | a if a = bx for
some x ∈ R.
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Definition 3.1.10: Let R be a commutative ring with nonzero elements a, b ∈ R.
Then a greatest common divisor of a, b is an element d ∈ R such that:
(1) d | a, d | b
(2) If d′ | a and d′ | b, then d′ | d.

This new definition means that both ±2 are greatest common divisors of 6, 8 ∈ Z. Similarly,
we can apply this to polynomial rings: for example, what are the GCDs of x2+x = x(x+1)
and x2 − 1 = (x+ 1)(x − 1) in R[x]? Well, (x+ 1) is a GCD, but so is any scalar multiple
of it. So the GCDs are {a(x+ 1) : a ∈ R− {0}}.

Theorem 3.1.11

If a, b ∈ R− {0} and (a, b) = (d) for some d ∈ R, then d is GCD of a, b.

Proof. We know d | a and d | b since a, b ∈ (d). Say d′ | a and d′ | b; then, (d′) ⊇ (a, b) =
(d). Therefore, d′ | d.

3.2 Revisiting the Euclidean algorithm

Theorem 3.2.1

Let R be a Euclidean domain with respect to a norm N , and let a, b ∈ R be nonzero
elements of the ring. Then the Euclidean algorithm operates as below:

a = bq0 + r0

b = r0q1 + r1

...

rn−2 = qnrn−1 + rn

rn−1 = rnqn+1 + 0

where N(r0) > N(r1) > · · · > N(rn) terminates and rn is a GCD for a, b.

Proof. Same as the proof for the Euclidean algorithm in Z. In particular, rn |
rn−1, rn−2, . . . , b, a and rn = ax + by for some x, y ∈ R. So (rn) = (a, b). Therefore, rn
is a greatest common denominator for a, b by the previous theorem.a

aThis explains why we use the notation (a, b) to denote the greatest common denominator of a, b.

3.3 Unique factorization domains

Definition 3.3.1: Let R be an integral domain. Say r ∈ R is a nonzero element that
is not a unit. Then r is called irreducible if r = ab =⇒ a or b is a unit.
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Definition 3.3.2: Let R be an integral domain. A nonzero element r ∈ R is prime

if (r) is a prime ideal. That is, (r) is a proper ideal, and if r | ab, then r | a or r | b.
Equivalently, if ab ∈ (r), then a ∈ (r) or b ∈ (r).

Definition 3.3.3: Say a, b ∈ R are associates if a = bu for u ∈ R a unit. Note:
this is an equivalence relation.

Consider the following examples of unique factorization domains:

• In Z, {±2,±3,±5,±7, · · · } = {irreducibles} = {primes}. Associates are of form ±a.

• In a field K, there are no irreducible elements, and there are no primes. Indeed,
consider any nonzero element in K: such an element must be a unit.

• Z[
√
−5] = {a + b

√
−5 : a, b ∈ Z} ∼= Z[x]/(x2 + 5). Addition is component-wise, and

multiplication behaves as follows:

(a+ b
√
−5)(c+ d

√
−5) = (ac− 5bd) + (ad+ bc)

√
−5

This example will demonstrate the difference between irreducibility and prime-ness.
Now, claim that 3 is irreducible in Z[

√
−5]. Note the norm on Z[

√
−5] is N(a +

b
√
−5) = a2 + 5b2 = (a + b

√
−5)(a − b

√
−5), which is multiplicative, i.e., N(αβ) =

N(α)N(β). Say 3 = αβ for α, β ∈ Z[
√
−5]. Then 9 = N(3) = N(α)N(β). It cannot

be the case that N(α) = N(β) = 3 since N(a+ b
√
−5) = a2 + 5b2 can never equal 3.

We can find a case where N(α) = 9, N(β) = 1. But then either α = ±1 or β = ±1, so
3 is irreducible as desired.

However, 3 is not prime in Z[
√
−5]. This is because 9 = 3 · 3 = (2 +

√
−5)(2−

√
−5),

so 3 | (2 +
√
−5)(2−

√
−5), but 3 ∤ (2 ±

√
−5). Hence 3 is not prime.

Theorem 3.3.4

Let R be an integral domain, with prime element p ∈ R. Then p is irreducible.

Proof. Say p prime and p = ab for a, b ∈ R. So p | a or p | b; we may assume p | a, so
write a = pc for some c ∈ R. Combining these statements gives p = pbc =⇒ bc = 1
since R is an integral domain. In particular, this means b is a unit.

Definition 3.3.5: An integral domain R is called a unique factorization domain

(UFD) if every nonzero element r ∈ R that is not a unit, r has a factorization into
irreducibles that’s unique in the following sense:
(1) r = p1 · · · pn for pi irreducible
(2) if r = q1 · · · qm for qi irreducibles, then m = n and after reordering, pi is an

associate of qi for each i = 1, . . . , n.

Here are some examples and non-examples:

• Z is a UFD: for example, 12 = 2 · 2 · 3. Reordering this factorization and multiplying
by units (±1) gives another factorization, e.g., 12 = (−3) · (−2) · 2.
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• Every principal ideal domain is a unique factorization domain (we’ll prove this).

• If R is a unique factorization domain, then so is the polynomial ring R[x].

• Z[
√
−5] is not a UFD. As before, note that 9 = 3 · 3 = (2 +

√
−5)(2 −

√
−5). As

we have shown, 3, 2 ±
√
−5 are irreducible in R. Further, 3 and 2 ±

√
−5 are not

associates. In fact, Z[
√
−5] is not even a principal ideal domain.

Theorem 3.3.6

(3, 2±
√
−5) is not a principal ideal.

Proof. If instead (3, 2±
√
−5) = (α), then what couldN(α) be? Note N(α) | 9 since

N is multiplicative. As we’ve shown before, N(α) 6= 3, so N(α) = 1 or 9. Could
N(α) = 1? If so, α = ±1. If so, then it would mean that (3, 2 +

√
−5) = Z[

√
−5];

but that can’t happen!
Alternatively, could N(α) = 9? If so, α = ±3, but also α = ±(2 +

√
−5), which is

a contradiction. Therefore (3, 2±
√
−5) is not a principal ideal as desired.

Lemma 3.3.7

If R is a unique factorization domain, p irreducible =⇒ p prime.

Proof. Let p ∈ R be an irreducible element. Given a, b ∈ R such that p | ab, then we
want to show that p | a or p | b. Factor a, b into irreducibles and multiply them:

ab = a1 · · ·anb1 · · · bm

Then p | ab =⇒ ab = p · c = p · c1 · · · ck. We conclude that p is an associate of some ai
or some bj, so p | a or p | b as desired.
Alternatively, assume p ∤ a, and say (p, a) = (d) for some d ∈ R. So either d is a unit, or
d = pu for some unit u via irreducibility. Since p ∤ a, then d is a unit. So a = px + ay
for x, y ∈ R, and therefore b = pbx+ aby, so p | b since p | RHS.

Corollary 3.3.8

Every nonzero prime ideal of a PID is maximal.

Definition 3.3.9: Let R be an integral domain. The field of fractions of R is the
field whose elements are equivalence classes of {(a, b) : a, b ∈ R, b 6= 0} under the
relation (a, b) ∼ (c, d) if ad = bc. Addition and multiplication are defined as follows:

(a, b) · (c, d) = (ac, bd)

(a, b) + (c, d) = (ad+ bc, bd)

As an exercise: check this is a field!

For example, FF (Z) = Q. Now, let’s state the following theorem about PIDs and UFDs.
We’ll work towards the proof in the following lemmas and definitions.
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Theorem 3.3.10

Every PID is a unique factorization domain.

Lemma 3.3.11

If R is a PID, then every ascending chain of ideals stabilizes.a That is, if

(a1) ⊆ (a2) ⊆ (a3) ⊆ · · ·

then there exists some N such that (aN ) = (aN+1).

aThis is called the ascending chain condition (ACC).

Proof. Consider I = ∪i≥1(ai), and claim that I is an ideal. We’ll prove this:
• Closure under addition - given x, y ∈ I, there exists m ∈ Z such that x ∈

(xm), and similarly ∃n ∈ Z such that y ∈ (xn). Then (amax(m,n)) ∋ x, y, so
I ⊇ (amax(m,n)) ∋ x+ y.

• Closure under multiplication - check that rx ∈ I if x ∈ I.
• Subgroup - check that additive inverses exist in I.

So I = (a) for a ∈ R, so a ∈ (aN ). Therefore (aN ) = I = (aN+1) = (aN+2) = · · ·

Definition 3.3.12: A ring is called Noetherian if every ideal is finitely generated.

Theorem 3.3.13

The ascending chain condition (ACC) holds for all Noetherian rings.

Now, let’s return to the theorem that all PIDs are UFDs. The proof is below:
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Proof. Let p ∈ R where R is a PID with p 6= 0 and non-unit. We’ll show the following
experessions:

1. Every such p can be factored into irreducibles.
2. Every such expression is unique up to reordering/associates.

We’ll prove the first condition now. If p is irreducible, we win. Otherwise, let’s say
p = p1p2 where p1, p2 are non-zero, non-unit elements. If p1, p2 are irreducible, then
we’re done. Therefore, let’s assume that p1 = p11p12 for p11, p12 non-zero, non-units,
continuing in this way forever. Observe that

(p) ⊆ (p1) ⊆ (p11) ⊆ · · ·

is an ascending chain which stabilizes by the previous element. Therefore, this process
stops, so we can factor p into irreducibles.
Now, we need to check the second condition. We’ll prove this via induction on n = the
number of factors in a minimal factorization of p.

• Base case - if n = 1, then p is irreducible.
• Inductive step - if n > 1, say that p = r1 · · · rn = q1 · · · qm for m ≥ n (where

ri, qi are irreducible). Then r1 irreducible =⇒ r1 is prime by the previous lemma.
Say r1 | q1 without loss of generality. Then q1 = r1 · u for some unit u.
At this point, we’re essentially done. We have “peeled off” a q1 and r1 from both
expressions of p, and the statement follows by induction. More formally:

p = r1(r2 · · · rn) = (u · r1)(q2 · · · qm)

so we’re done by the inductive hypothesis applied to r2 · · · rn = u · q2 · · · qm.

Theorem 3.3.14

If R is a UFD, then R[x] is too. (Converse holds too!)

Here’s the key idea behind this theorem: if F is a field, then F [x] is a Euclidean domain.
We’ll use properties of UFDs and “bootstrap up” to this claim about fields and prove the
equivalent statement for UFDs.

As an example, consider x2−1 ∈ Z[x]. We can write x2−1 = (2x−2)(12x+
1
2 ) = (x−1)(x+1),

and we want to show that these two expressions are equivalent. To do so, we’ll use the field
of fractions, as discussed on HW 11.

Lemma 3.3.15: Gauss’s Lemma

Let R be a UFD, with F = Frac(R). Further, let p(x) ∈ R[x] with p(x) = A(x) ·B(x),
with A,B ∈ F [x]. Then, there exists r, s ∈ F \ {0}, such that a(x) = r · A(x),
b(x) = s ·B(x), and p(x) = a(x) · b(x) and also a(x), b(x) ∈ R[x].

60



Nicholas Tomlin MATH 1530: Abstract Algebra

Proof. Clearing denominators, say d · p(x) = a′(x) · b′(x) for d ∈ R \ {0}, a′, b′ ∈ R[x]. If
d is a unit, then we’re done. Otherwise, let d = p1 · · · pn where each pi ∈ R is irreducible.
Without loss of generality, let us reduce both sides of the following equality modulo p1:

p1 · · · pn · p(x) = a′(x) · b′(x)

In other words, consider images under R[x] → R/(p1)[x]. Note that p1 irreducible
=⇒ p1 prime, so R/(p1)[x] is an integral domain. We have 0 = a′(x) · b′(x), so without
loss of generality, let’s say that a′(x) = 0, i.e., p1 | a′(x). Therefore, we can divide both
sides of the equation by p1, so here’s the new equation:

p2 · · · pn · p(x) = a′(x)

p1
b′(x)

Proceed similarly on p2, . . . , pn to complete the proof.

Example 6: To make this proof more clear, let’s return to the case where x2 − 1 =
(2x− 2)(12x+ 1

2 ). As before, we can clear out denominators via multiplication by two:

2(x2 − 1) = (2x− 2)(x+ 1)

Then in Z/2Z, this reduces to 0 = 0 · (x + 1). Then, we know that 2 | 2x − 2, so we can
divide both sides of the equation to get (x2 − 1) = (x − 1)(x+ 1) as desired.

Corollary 3.3.16

Let R be a UFD, with F = Frac(R). Say p(x) ∈ R[x]is irreducible or an element of
F [x]. If a GCD of coefficients of p is 1, then p is irreducible over R[x].

For example, 2x+ 2 is irreducible in Q[x], but not in Z[x].

Proof. If p(x) = a(x)b(x) is reducible over R[x] and if gcd(coefficients of p) = 1, then
a, b are nonconstant polynomials. So a(x)b(x) is a factorization over F [x], too.

Now, we’ll prove the previous theorem: R is a UFD ⇐⇒ R[x] is a UFD.

Proof. Say p(x) ∈ R[x]. By squeezing out the GCD of coefficients, we may assume that
gcd(coefficients of p) = 1. That is, using the fact that R is a UFD, write p(x) = d · p̃(x)
where d ∈ R \ {0} and p̃ satisfies the GCD condition.
Then p(x) = q1(x) · · · qn(x) with qi ∈ R[x] that are irreducible over F [x] (using Gauss’s
lemma). Then qi are also irreducible over R[x] since the GCD of coefficients of each qi
is 1 (follows from previous corollary).
For uniqueness of factorization, let’s say

p(x) = q′1(x) · · · q′n(x)

is another factorization. We can assume these factorizations have the same number of
terms since F [x] is a field and therefore a UFD. Then qi, q

′
i are associates in F [x], and

therefore they’re also associates in R[x].
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Corollary 3.3.17

If R is a UFD, then R[x1, . . . , xn] is too.

Proof. Via induction on n.

4 Fields

Recall some examples of fields: Q, R, and C are all fields. However, we might also consider
the finite field Fp = Z/pZ, or the field of fractions Frac(R) over any integral domain R. We
can even consider fields of fractions based on polynomial rings, e.g., Q(x) = Frac(Q[x]) and
Fp(x) = Frac(Fp[x]).

Theorem 4.0.1

Any nonzero homomorphism of a field into a ring is injective.

Proof. Let ϕ : K → R be such a homomorphism. Then kerϕ ⊆ K is an ideal, but
kerϕ 6= K by the assumption this is a nonzero homomorphism. Therefore, kerϕ = 0.

Definition 4.0.2: The characteristic of a field F is the smallest p ∈ Z>0 such that
0 = 1 + · · ·+ 1 (repeated p times), or is defined as 0 if no such p exists.

Definition 4.0.3: The prime subfield of F is the smallest subfield containing 1.

Theorem 4.0.4

Any intersection of subfields of a field F is a field.

Theorem 4.0.5

Let F be a field. Either char(F ) = 0 and the prime subfield is Q, or char(F ) = p and
the prime subfield is Z/pZ
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Proof. Consider the following homomorphism:

ϕ : Z → F

1 7→ 1

n 7→ 1 + · · ·+ 1 (repeated n times)

First, let’s consider the case in which ϕ is injective. Then we have char(F ) = 0. There-
fore, ϕ sends nonzero elements of Z to the units in F such that the below left diagram
commutes:

Z

Q F

i
ϕ

ϕ̃

Z

Z/nZ F

ϕ

inj.

Therefore, there exists a unique ϕ̃ such that this diagram commutes. Then, ϕ̃ 6= 0 so ϕ̃
is injective by the previous proposition, and Q is a prime subfield.
Now, we’ll consider the case where ϕ is not injective (above right diagram). By the first
isomorphism theorem, imϕ ∼= Z/ kerϕ so that Z/nZ ⊆ F . Then, n must be prime, or
else this ring would have zero divisors, which cannot occur because then there would be
zero divisors in F . Therefore Z/nZ is a prime subfield.

Definition 4.0.6: If F ⊆ K for fields F,K, then we say “K over F ,” often denoted
K/F , is a field extension.a

aThis is equivalent to the concept of a subfield. Don’t confuse it with quotients!

In this situation, note that K has the structure of an F -vector space. That is, given elements
a ∈ F , x ∈ K, then a · x = ax ∈ K. For example, C/R makes C an R-vector space.

Definition 4.0.7: The degree of the field extension K/F is [K : F ] = dimF K, i.e.,
the dimension of K as an F -vector space.

As an example of degree, note that [C : R] = 2. Meanwhile, [R : Q] = ∞ by convention.

4.1 Field extensions to solve polynomial equations

Suppose p(x) is an irreducible polynomial in F [x] for a field F , and we wish it hat a root!
For example, x2 + 1 ∈ R[x] is such a polynomial.

Now, let K = F [x]/(p(x)). Note that p is irreducible =⇒ p is prime =⇒ F [x]/(p(x))
is an integral domain. In fact, K is a field, since every nonzero prime ideal in a PID
is maximal, and we quotiented by a maximal ideal. Further, there is an injective map
F →֒ F [x]/(p(x)) = K. Note that this map is nonzero, and therefore K/X is a field
extension in which p now has a root.

For example, the polynomial x2 + 1 now has a root in R[x]/(x2 + 1). However, we can’t
just say the solution is i =

√
−1, rather, we can express this as an equivalence class in

R[x]/(x2+1). For example, the element x̄ = x+(x2+1) is a root! Then p(x̄) = p(x) = 0 ∈ K.
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Here’s a more specific example: x̄2 = (x + (x2 + 1))2 + (1 + (x2 + 1)) = |x2 + (x2 + 1)| +
|1 + (x2 + 1)| = x2 + 1 + (x2 + 1) = 0 ∈ R[x]/(x2 + 1). Stare at this.

Note that if F ⊆ K is a subfield, then we can plug in a ∈ K into p(x) ∈ F [x] ⊆ K[x].
Warning: on F2 = Z/2Z, x2 + x and 0 give the same values on {0, 1}.

Theorem 4.1.1

Let F be a field. Say p(x) ∈ F [x] is an irreducible polynomial of degree n. Write
θ = x̄ = x + (p(x)) ∈ F [x]/(p(x)) =: K. Then, 1, θ, θ2, . . . , θn−1 is a basis for K as
an F -vector space. [K : F ] = n.

Proof. First, we’ll check that these elements span the vector space: if a(x) ∈ F [x], then
the Euclidean algorithm on F [x] implies that:

a(x) = q(x)p(x) + r(x) deg(r(x)) < n or r = 0

Thus, a(x)+(p(x)) ∈ span(1, θ, . . . , θr−1). Specifically, r(x) = r0+ r1x+ · · ·+ rn−1x
n−1.

Then, a(x) + (p(x)) = r0 + r1θ + · · ·+ rn−1θ
n−1.

We have checked the span, so now let’s see that these elements are linearly independent.
Given c0, . . . , cn−1 ∈ F such that c0 + c1θ + · · · + cn−1θ

n−1 = 0 ∈ K ⇐⇒ c0 + c1x +
· · ·+ cn−1x

n−1 ∈ (p(x)) =⇒ c0 = · · · = cn−1 = 0, so they are independent.

Example 7: Let p(x) = x2 + x + 1 ∈ F2[x]. Note that p is irreducible, and let K =
F2[x]/(x

2 + x+ 1). Note that [K : F ] = 2 =⇒ |K| = 4. Then 1, x form a basis for K over
F2. Here’s how multiplication and addition work:

+ 0 1 x 1+x
0 0 1 x 1+x
1 1 0 1+x x
x x 1+x 0 1

1+x 1+x x 1 0

· 0 1 x 1+x
0 0 0 0 0
1 0 1 x 1+x
x 0 x 1+x 1

1+x 0 1+x 1 x

Theorem 4.1.2

There us a unique (up to isomorphism) field of each prime power.a

aThe proof of this theorem is not within the scope of MATH 1530. (Non-examinable.)

Recall: we showed that if p(x) ∈ F [x] is an irreducible polynomial of degree n, then K =
F [x]/(p(x)) is a field extension over F . So if F = Fp = Z/pZ, then dimF K = n so |K| = pn.

Theorem 4.1.3

Any finite field must have prime power order.

Indeed, such a field a finite-dimensional vector space over its prime subfield Fp, so its order
is pn for some n. Now, let’s say K/F is a field extension:
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Definition 4.1.4: If {αi}i∈I is a collection of elements of K, let F ({αi}i∈I) be the
smallest subfield of K containing F and each αi.

a

a”The field generated by {αi} over F .”

We need to check that the smallest subfield is equal to the intersection of all subfields of K
containing {αi}. In other words:

∩K⊇E⊇FE = F ({αi})

If {αi} ⊆ F , then F ({αi}) = F and conversely. For example, consider Q(
√
2) ⊆ R. Then

Q(
√
2) = {a+ b

√
2 : a, b ∈ Q}. Check that this is a field.

4.2 More field extensions

Note that Q(
√
2) ∼= Q[x]/(x2 − 2) where p(x) = x2 − 2.

Theorem 4.2.1

Let K/F be a field extension such that K has a root α ∈ K of an irreducible polynomial
p(x) ∈ F [x]. Then F (α) ∼= F [x]/(p(x)).

Proof. We want to use the first isomorphism theorem, so let’s define a map ϕ : F [x] →
F (α) be the “plugging-in-α” homomorphism, i.e., ϕ(r(x)) = r(α) ∈ K. Note that
r(α) = F (α). Then kerϕ ∋ p(x) or kerϕ ⊇ (p(x)), so the following diagram commutes:

F [x]

F [x]/(p(x)) F (α)

π
ϕ

ϕ

and is called the universal property of quotients. Note that ϕ is a nonzero map from
a field, and is therefore injective. Since imϕ ⊆ F (α), we conclude that F [x]/(p(x)) =
imϕ = F (α) as desired.

Theorem 4.2.2: Universal Property of Quotients

If ϕ : R → S is a ring homomorphism such that I ⊆ R with kerϕ ⊇ I., then ϕ factors
as shown below:

R

R/I S

π
ϕ

ϕ

In other words, there exists a unique ϕ such that ϕ = ϕπ.
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4.3 Algebraic extensions

Let K/F be a field extension.

Definition 4.3.1: α ∈ K is algebraic over F if it’s the root of some nonzero poly-
nomial p(x) ∈ F [x]. Otherwise, we call it transcendental.

Definition 4.3.2: We say K/F is algebraic if every α ∈ K is algebraic.

Example 8: Here are some examples of algebraic and non-algebraic fields:

• F/F is algebraic. That is, for any α ∈ F , then α is a root of x− α ∈ F [x].

• R/Q is not algebraic. E.g., e and π are transcendental.

• F (x)/F = Frac(F [x]) is not algebraic.

Given these examples, let’s ask: is Q(
√
2) = {a + b

√
2 : a, b ∈ Q} an algebraic extension

over Q? Well,
√
2 is algebraic, since x2 − 2 = 0. For the general case, choose three elements

1, α, α2 ∈ Q(
√
2). For example, we might choose

1 = 1 + 0
√
2

α = 3 + 4
√
2

α2 = 41 + 24
√
2

There are three elements in this two-dimensional Q-vector space Q(
√
2), so they are depen-

dent over Q. (I.e., 6α− α2 = −23.) Therefore, α must be algebraic.

Theorem 4.3.3

Every finite extension K/F is algebraic.

Proof. Given α ∈ K, the n+ 1 elements 1, α, α2, . . . , αn are linearly independent in the
F -vector space K. Therefore, there exist c0, . . . , cn not all zero such that

c0 + c1α+ · · ·+ cnα
n = 0

so therefore the field extension is algebraic.

Definition 4.3.4: A polynomial p(x) ∈ F [x] is monic if the leading coefficient (i.e.,
on the highest degree term) is 1.

Theorem 4.3.5

Let α ∈ K be algebraic over F . Then there is a unique, irreducible monic polynomial
mα,F (x) ∈ F [x] having α as a root, and every polynomial for which α is a root is a
polynomial multiple of mα,F . This mα,F is a minimal polynomial.
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For example, consider C/R with α = i. Then the minimal polynomial is x2 + 1, so any
polynomial with root i is divisible by x2 + 1. Also, observe C ∼= R[x]/(x2 + 1).

Proof. Consider the following “plugging-in-α” homomorphism:

ϕ : F [x] → F (α) ⊆ K

p(x) 7→ p(α)

We have shown previously that ϕ is a homomorphism, with imϕ = F (α). Note that any
p(α) ∈ F (α).
On the other hand, if q is any nonzero polynomial with q(α) = 0, then if deg q = n, we
have F (α) = {c0 + c1α + · · · + cn−1α

n−1 : ci ∈ F}. By the first isomorphism theorem,
F [x]/ kerϕ ∼= F (α). Note that kerϕ is ideal in F [x], so kerϕ = (p(x)) for some p.
Moreover, (p(x)) is maximal, and therefore prime, and therefore p(x) is irreducible.
There’s a unique choice of monic generator, which is the polynomial we want.

4.4 The final class: more field extensions and their applications

Let K/F be a field extension. Recall the definition of minimal polynomials: if α ∈ K is
algebraic over F , then let mα,F (x) be a polynomial in F [x] of smallest degree, subject to
the condition that α is a root. Claim that m must be irreducible, and re-scaling, we can
assume that m is monic. Then we call m the minimal polynomial of α.

We showed that there is an isomorphism F [x]/(m(x)) ∼= F (α) sending p(x) to p(α). It
follows that, letting n = deg(m(x)), then:

F (α) = {c0 + c1α+ c2α
2 + · · ·+ cn−1α

n−1 : ci ∈ F}

Note that p(x) = q(x)m(x) + r(x) where r(x) = 0 or deg(r(x)) < n. We say that α has
degree n over F in this case.

Theorem 4.4.1

Say F ⊆ K ⊆ L are fields. Then [L : F ] = [L : K] · [K : F ].a

aInterpreted appropriately for infinite degree extensions.

Proof. We’ll consider an example of how this might work for the finite case. Say that
n = [L : K] and m = [K : F ]. Then, we can say that α1, . . . , αm is a basis for K as
an F -vector space; similarly, let β1, . . . , βn be a basis for L as a K-vector space. Then,
verify that αiβj ∈ L form a basis for L as an F -vector space.
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Theorem 4.4.2

Let K/F be a field extension, and say α1, . . . , αk ∈ K are algebraic elements of degrees
n1, . . . , nk, respectively. Then:

[F (α1, . . . , αk) : F ] = [F (α1, . . . , αk) : F (α1, . . . , αk−1)]

= [F (α1, . . . , αk−1) : F (α1, . . . , αk−2)]

...

= [F (α1) : F ]

which is less than nk · · ·n1.

Proof. Note that F (α1, . . . , αi) = F (α1, . . . , αi−1)(αi) has degree, over F (α1, . . . , αi−1),
at most ni. Indeed, mαi,F ∈ F [x] ⊆ F (α1, . . . , αi−1)[x] has degree ni.

Example 9: Q(
√
2,
√
3) ⊆ R is an extension of Q. We can write Q ⊆ Q(

√
2) = {a+ b

√
2 :

a, b ∈ Q} ⊆ Q(
√
2,
√
3). Now, let’s check that [Q(

√
2,
√
3) : Q(

√
2)] = 2. Indeed, we

know that this value is either 1 or 2, so let’s just check that it’s not equal to 1. If it were,
then

√
3 ∈ Q(

√
2). For the sake of contradiction, suppose that

√
3 = a + b

√
2. Then

3 = (a2 + 2b2) + 2ab
√
2, but this means

√
2 is rational, which is a contradiction.

Then Q(
√
2,
√
3) = {a+ b

√
3 : a, b ∈ Q(

√
2)} = {(a1 + a2

√
2) + (b1 + b2

√
2)
√
3 : ai, bi ∈ Q},

so [Q(
√
2,
√
3) : Q] = 4.

Corollary 4.4.3

Let K/F be a field extension. The algebraic elements of K over F form a field.

This corollary is quite good. For example, we might be able to think of obvious polynomials
that have

√
2 and 10

√
5 as roots, so these elements are algebraic. But can we think of a

polynomial such that
√
2 + 10

√
5 is a root? Not easily, but this corollary tells us one must

exist. Now, let’s prove it:

Proof. Let α, β ∈ K be algebraic. We want to show that α + β, α − β, αβ, and α/β
(if β 6= 0) are all algebraic. These all lie in F (α, β), which is finite over F (since
[F (α, β) : F ] ≤ degα · deg β), and finite extensions are algebraic.

For example, in C/Q we can define Q̄ to be the elements of C that are algebraic over Q.
(Called the “field of algebraic numbers.”) The following material is non-examinable, but
cool: Q̄ is countable, meaning it injects (as a set) into Z, whereas C is uncountable.

4.4.1 Impossibility of doubling the cube

Note: the following example is similar to the impossibility of trisecting angles, “squaring
the circle,” etc. Such tasks are impossible to do using only a compass and a straightedge.
That is, we can draw circle arcs and draw straight lines, and we can also mark points of
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intersection. We start off with the origin and (0, 1) marked on a graph, and we’re tasked
with trying to mark other points. However, there’s not much else we can do. /

The question: can we mark ( 3
√
2, 0) in this way? We can find ways to bisect lines, form right

angles, and even mark square roots, but we cannot double the cube.

At each step of this compass/straightedge construction, consider the field F generated over
Q by the coordinates of marked points. We can describe intersection of lines in this way:
choose four points in F , where each pair of points defines a line. Therefore, the intersection
coordinate must also be an element of F .

Similarly, we can describe any circular arc via two points: the center and some point on
the border of the circle. Then, the equation of this circle is (x − a)2 + (y − b2) = c2 where
a, b, c2 ∈ F . We can also intersect this circle with a line sx + ty = u which has s, t, u ∈ F .
So, the new field is either F or some degree 2 extension of F .

Intersecting two circles works in a similar way. We can write (x − a)2 + (y − b)2 = c2 and
(x − a′)2 + (y − b′)2 = c′2 with a, a′, b, b′, c, c′ ∈ F . The situation is therefore the same as
where we intersected a line with a circle.

In summary, the field K at the end of this process is a degree 2n extension over Q for
some n ∈ Z. Therefore, is it possible to double the cube? Say that 3

√
2 ∈ K: then,

Q ⊆ Q( 3
√
2) ⊆ K. We know that [K : Q] = [K · Q( 3

√
2)] · [Q( 3

√
2) : Q], but this cannot

happen: since [K : Q] is a power of two, and [Q( 3
√
2) : Q] = 3, we cannot have 3 ∤ 2n and

therefore we cannot double the cube. Woohoo!
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