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1 Introduction to groups

1.1 Preliminary definitions

Definition 1.1.1: A set is “a collection of elements,” e.g., the integers Z =
{. . . ,−2,−1, 0, 1, 2, . . .}, the real numbers R, and the rational numbers Q (fractions).
Note that we use Z≥0 = {0, 1, 2, . . .} to refer to the nonnegative integers.

Definition 1.1.2: If A,B are sets, define the Cartesian product as

A×B = {(a, b) | a ∈ A, b ∈ B}

We can abbreviate A2 = A×A. Similarly, if A1, . . . , An are sets, then

A1 × · · · ×An = {(a1, . . . , an) | a1 ∈ A1, . . . , an ∈ An}

Let An = A× · · · ×A (n times).

Definition 1.1.3: A function f : A→ B, or a map, is an association of an element
f(a) ∈ B to every element a ∈ A. We call A the domain of f , and B the codomain
of f . Furthermore, the range or image of f is

{f(a) : a ∈ A}

Example 1: Let f : Z → Z be given by x 7→ 2x.1 The codomain and domain are both Z,
while the image is

{b ∈ Z : b = 2a for some a ∈ Z}

which is the set of even numbers.

Definition 1.1.4: A binary operation on a given set G is a function ∗ : G×G→ G.
For example, integer addition (+ : Z× Z→ Z) is a binary operation.

1The symbol 7→ means ”maps to.”
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1.2 What is a group?

Definition 1.2.1: A group is a set G together with a binary operation ∗ : G×G→ G
such that the following hold:
(1) “Associativity”: for a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).
(2) “Existence of the identity”: there is an element e ∈ G such that for all g ∈ G,

e ∗ g = g and g ∗ e = g.
(3) “Existence of inverses”: for every g ∈ G, there is an element that we’ll call

g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = e, where e is an identity element of G.

Theorem 1.2.2
(Z,+) forms a group.a

aWe write the ordered pair (Z,+) to represent the integers along with the binary operation of
addition.

Proof. Indeed, we check that (Z,+) satisfies the three axioms of being a group:
(1) For associativity, we note that (a+ b) + c = a+ (b+ c) for all a, b, c ∈ Z.
(2) For existence of the identity, 0 ∈ Z satisfies 0 + a = a+ 0 = a for all a ∈ Z.
(3) For existence of inverses, consider some a ∈ Z. Then assert that −a ∈ Z satisfies

a+ (−a) = (−a) + a = 0.
Thus, we have shown that (Z,+) is a group.

Definition 1.2.3: Let (G, ∗) be a group. Then G is a commutative or abelian
group if a ∗ b = b ∗ a for all a, b ∈ G.

For example, Z, R, and Q with addition are all commutative groups. However, below is
an example of a non-commutative group.

Example 2: Not all groups are commutative. Let G be the symmetries of a can (cylinder) C
which are physically possible, i.e., the rigid motions preserving the can. These are called the
orientation-preserving isometries of R3. More precisely, we can define the set of symmetries

Sym(C) = {A : R→ R : det(A) = 1, A(C) = C}

where A is an linear transformation which is an isometry. Put this together with the binary
operation of composition ◦, and this forms a group.

However, these motions are not commutative. That is, flipping the can and then rotating
it is distinct from rotating the can and then flipping it.

Theorem 1.2.4
Every group has a unique identity element.
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1.3 The group Z/nZ

Definition 1.3.1: Let A be a nonempty set. Then a relation on A is a subset
R ⊆ A×A, which is written a ∼ b if and only if (a, b) ∈ R.

Definition 1.3.2: A relation R is an equivalence relation if it satisfies the follow-
ing three properties:
(1) “Reflexivity”: a ∼ a for all a ∈ A.
(2) “Symmetry”: if a ∼ b, then b ∼ a for all a, b ∈ A.
(3) “Transitivity”: if a ∼ b and b ∼ c, then a ∼ c for all a, b, c ∈ A.

Let f : A→ D be a function. Given a, b ∈ A, we’ll say a ∼ b if and only if f(a) = f(b). This
is an equivalence relation; moreover, all equivalence relations can be written in this form.

Example 3: Consider the set A = {students in Math 1530}. For any two students a, b ∈ A,
say a ∼ b if and only if a has the same birthday as b. This is an equivalence relation, so
we can relate this to the above form as follows. Let D = {Jan 1, . . . , Dec 31} be the set of
possible birthdays, and f : A→ D be a function mapping students to their birthdays.

Definition 1.3.3: Let ∼ be an equivalence relation on A. Then we say

a = {b ∈ A : a ∼ b}

is an equivalence class of a. The equivalence classes of A partition it into non-
overlapping groups covering all of A.

Let n ∈ Z. Say n | a (pronounced “n divides a”) if a = kn for some k ∈ Z. Now define a
relation ≡n on Z by a ≡n b if n | (a − b). We call this relation “congruent modulo n.” To
prove that ≡n is an equivalence relation on Z, we must show the following:

(1) a ≡n a for all a ∈ Z.

(2) a ≡n b implies b ≡n a for all a, b ∈ Z.

(3) a ≡n b and b ≡n c implies a ≡n c for all a, b, c ∈ Z.

Proof. Indeed, we will show that ≡n satisfies the three axioms of equivalence relations:
(1) For reflexivity, a− a = 0 and n | 0.
(2) For symmetry, a ≡n b =⇒ n | (a− b) =⇒ a− b = kn for some k ∈ Z. We want to

show that b ≡n a, i.e., b− a = ln for some l ∈ Z. We may take l = (−k).
(3) For transitivity, there exists k, l ∈ Z such that a − b = kn and b − c = ln. Then,

adding these equations gives a − c = (k + l)n. Since (k + l) ∈ Z, we conclude
n | (a− c) =⇒ a ≡n c.
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Definition 1.3.4: Z/nZ is the set of equivalence classes modulo n, i.e., equivalence
classes with respect to the equivalence relation ≡n.

For example, Z/5Z = {0, 1, 2, 3, 4}. The choice of “captains” is not important, so we could
alternatively write this as Z/5Z = {10,−4, 2, 8, 24}.

Definition 1.3.5: We define the binary operation of addition + : Z/nZ × Z/nZ →
Z/nZ as follows: a+ b = a+ b for all a, b ∈ Z/nZ.

Lemma 1.3.6
Addition on Z/nZ is well-defined, as stated above.

Proof. Given a1, a2 ∈ Z such that a1 = a2 and b1, b2 ∈ Z such that b1 = b2, we want to
show that a1 + b1 = a2 + b2. Indeed, a1 − a2 = kn and b1 − b2 = ln for k, l ∈ Z. Adding
these equations gives

(a1 + b1)− (a2 + b2) = (k + l)n

so that a1 + b1 = a2 + b2 since (k + l) ∈ Z.

Theorem 1.3.7
(Z/nZ,+) is a group.

Proof. Again, we check the three group axioms:
(1) We have

a+ (b+ c) = a+ b+ c

= a+ (b+ c)

= (a+ b) + c

= a+ b+ c

= (a+ b) + c

by associativity of addition.
(2) We have 0 + a = a+ 0 = a for all a ∈ Z/nZ.
(3) We have −a+ a = a+ (−a) = 0 for all a ∈ Z/nZ.

Definition 1.3.8: We define the binary operation of multiplication · : Z/nZ×Z/nZ→
Z/nZ as follows: a · b = ab for all a, b ∈ Z/nZ.

Theorem 1.3.9
Multiplication on Z/nZ is well-defined, as defined above.
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1.3.1 The multiplicative group (Z/nZ)×

However, (Z/nZ, ·) is not a group unless n = 1, as inverses may not exist. Indeed, 1̄ is an
identity, but 0̄ · a = 1̄ has no solution, i.e., there is no multiplicative inverse for 0̄. Now, let:

(Z/nZ)× = {ā ∈ Z/nZ : ā · c̄ = 1̄ for some c̄ ∈ Z/nZ}

We call this set “the multiplicative units of Z/nZ.”

Example 4: Given n = 4, we say (Z/4Z)× = {1̄, 3̄}. In particular, 1̄ · 1̄ = 1̄ and 3̄ · 3̄ = 1̄.

Theorem 1.3.10
((Z/nZ)×, ·) is a group.

Proof. Given ā, c̄ ∈ (Z/nZ)×, we must show that ā·c̄ ∈ (Z/nZ)×. First, we will show that
· defines a binary operation on (Z/nZ)×, i.e., (Z/nZ)× is closed under multiplication.
Indeed, ā · b̄ = 1̄ and c̄ · d̄ = 1̄ for some b̄, d̄ ∈ Z/nZ. Multiplying these equations gives:

1̄ = (ā · b̄)(c̄ · d̄)

= (ā · c̄)(b̄ · d̄)

In addition, associativity holds as in Z/nZ. There is an identity element, namely 1̄, and
inverses exist as in Z/nZ based on the definition of (Z/nZ)×.

Theorem 1.3.11
(Z/nZ)× = {ā : a ∈ Z, (a, n) = 1}

1.3.2 Applications of arithmetic in Z/nZ

Example 5: What is the last digit of 250? To calculate this, work in Z/10Z:

2̄ · 2̄ = 4̄

2̄ · 2̄ · 2̄ = 8̄

2̄ · 2̄ · 2̄ · 2̄ = 6̄

2̄ · 2̄ · 2̄ · 2̄ · 2̄ = 2̄

and so on. Hence this cycles through (2̄, 4̄, 8̄, 6̄) as demonstrated above. We can use this

pattern to see the last digit is 4 . Alternatively, since 25 = 2̄:

250 = (25)10

= 210

= 25 · 25

= 2̄ · 2̄ = 4̄
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1.4 Some general theorems about groups

Lemma 1.4.1
Let (G, ∗) be a group. Then G has a unique identity element.

Proof. Let e, f ∈ G be identity elements. Then:

e = e ∗ f (since f is an identity element)

e ∗ f = f (since e is an identity element)

Therefore e = f and there is exactly one identity element.

Lemma 1.4.2
Let (G, ∗) be a group. Then G has a unique inverse.

Proof. Given a ∈ G, suppose that b, c ∈ G are inverses of a. Then:

e = a ∗ b (since b inverse of a)

c ∗ e = c ∗ a ∗ b
c = b (since c inverse of a)

Since b = c, every element of a group must have a unique inverse.

Lemma 1.4.3
Let (G, ∗) be a group. Then (a ∗ b)−1 = (b−1) ∗ (a−1) for all a, b ∈ G.

Proof. We need to check that (a ∗ b) ∗ ((b−1) ∗ (a−1)) = e is the identity element. This
is left as an exercise to the reader.

Lemma 1.4.4
Let (G, ∗) be a group. For any a1, . . . , an ∈ G, a1 ∗ · · · ∗ an has a well-defined value,
i.e., is independent of bracketing.

Theorem 1.4.5
Given (G, ∗) a group and a, b ∈ G, the equation ax = b has a unique solution.

1.5 The order of a group

Definition 1.5.1: Let (G, ∗) be a group. The order of a group G denoted |G| is
the number of elements. If G is infinite, say |G| =∞.

8
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Definition 1.5.2: Let (G, ∗) be a group. The order of an element a ∈ G is the
smallest n ∈ Z>0 such that an = e.

Example 6: The symmetries of a can Sym(C) has order |Sym(C)| =∞, but it has elements
of finite order. For instance, the identity has order |e| = 1. A rotation by 180◦ has order 2,
a rotation by 120◦ has order 3, and so on. In fact, for any order n ∈ Q, a rotation by 2π/n
has order n.

1.6 A brief interlude on functions

Definition 1.6.1: Let f : A → C be a function on sets. Then f is injective (one-
to-one) if given any two elements a, b ∈ A, then f(a) = f(b) =⇒ a = b.a

aThe contrapositive, a 6= b =⇒ f(a) 6= f(b) is equivalent.

Definition 1.6.2: Let f : A→ C be a function on sets. Then f is surjective (onto)
if for all c ∈ C, there exists a ∈ A with f(a) = c.

Definition 1.6.3: A function is bijective if it is both injective and surjective.

Given a function f : A → C between finite sets A and C, then we write |A| to denote the
number of elements (i.e., the cardinality) of A. Then, we can say:

1. f injective =⇒ |A| ≤ |C|

2. f surjective =⇒ |A| ≥ |C|

3. f bijective =⇒ |A| = |C|

1.7 Dihedral groups

Definition 1.7.1: The dihedral group, denoted D2n, is the group of rigid motions
of a regular n-gon. The group operation is composition.

The 2n subscript in the name for the dihedral group refers to the order of the group. We
can rotate the n-gon by integer multiples of 2π/n, and we can “flip” the n-gon in R3. These
combinations of rotations and flips are specifically the 2n elements of the dihedral group.

More rigorously, we can label the vertices of an n-gon {1, . . . , n} in clockwise order. A rigid
motion of the n-gon can be recorded as a bijection

σ : {1, . . . , n} → {1, . . . , n}

9
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i.e., a permutation of {1, . . . , n}. Therefore, σ(j) records the new position of vertex j. We
claim that the map of sets

D2n → {bijections from {1, . . . , n} → {1, . . . , n}}

is injective. The intuition here is that the rigid motions of the n-gon are a subset of the
possible permutations. Now, note that D2n has at least 2n elements (as shown above).

Theorem 1.7.2
|D2n| = 2n (i.e., D2n is the dihedral group of order 2n)

Proof. We know that |D2n| ≥ 2n, so we want to show |D2n| ≤ 2n. Define a map:

D2n → {(1, 2), . . . , (n− 1, n), (n, 1), (2, 1), . . . , (n, n− 1), (1, n)}
σ 7→ (σ(1), σ(2))

where the target has cardinality 2n. This map is injective, since any two adjacent
elements uniquely define a rigid motion of the n-gon. Thus, |D2n| ≤ 2n.

1.7.1 Explicit description of D2n

Label an n-gon {1, . . . , n} on its vertices. Let r be clockwise rotation by 2π/n, and let s be
a reflection about the central line bisecting the angle at vertex 1. Note that:

• 1, . . . , rn−1 ∈ D2n are distinct rotations.

• s is distinct from 1, . . . , rn−1.

• s, sr, sr2, . . . , srn−1 ∈ D2n are all distinct.

Theorem 1.7.3
D2n = {1, . . . , rn−1, s, . . . , srn−1}

Proof. We need only show that

ri 6= srj for any i, j ∈ {1, . . . , n− 1}

Indeed, ri−j 6= s.

Furthermore, rs = sr−1, i.e., rotating and reflecting is the same as reflecting and rotating
by the same amount in the opposite direction.

Given these observations, we now know how to multiply in D2n. For example, we can
multiply the rigid motions (sr6) and (sr9) on an arbitrary regular n-gon:

(sr6)(sr9) = s(r6s)r9

= s(r5sr−1)r9

= s(sr−6)r9

= r3

10
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Alternatively, we can define D2n in terms of generators and relations as follows:

D2n = 〈r, s | rn = 1, s2 = 1, rs = sr−1〉

In particular, any relation on elements of D2n can be obtained from the given relations.

1.8 Symmetric groups

Definition 1.8.1: Let X be a non-empty set, and let SX be the permutations of X.
When X = [n] := {1, . . . , n}, we write Sn = S{1,...,n}. Then SX is a group under
composition, where f ∗ g = g ◦ f .

Example 7: S3 = {{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}}.

Lemma 1.8.2
A map f : A→ C is a bijection if and only if there exists a function g : C → A such
that f ◦ g = idC and g ◦ f = idA.

Theorem 1.8.3
The order |Sn| = n!, i.e., the factorial of n.

Proof. To choose a permutation of {1, . . . , n}, we can choose any of n mappings for 1,
n−1 remaining mappings for 2, and so on. Since there is no “overlap,” this is an injective
function. Furthermore, since this is injective and the domain and range have the same
number of elements, it is also a bijection.

1.8.1 Cycle notation for permutations

Let σ ∈ Sn. Using the two-line notation style for permutations, we can write:

σ =

(
1 2 3 4 5 6 7
7 2 4 1 6 5 3

)
This maps 1 7→ 7, 2 7→ 2, and so on. Alternatively, it can be represented with a directed
graph, as in the following example:

Example 8: Given σ = {7, 2, 4, 1, 6, 5, 3}, the corresponding directed graph is as follows:

11
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1

4

3

2

5
6 7

The above directed graph can be divided into three disjoint cycles σ = (1734)(56)(2), or
just σ = (1734)(56).2 More generally, we’ll claim that any such permutation must produce
a graph of disjoint cycles. This notation allows us to calculate inverses and powers:

• Inverses - σ−1 = (4371)(65), which is calculated by going in the reverse direction

• Powers - σ2 = (13)(47)(5)(6) = (13)(47), where we count every other element of each
cycle. To calculate σn, count every nth element.

Theorem 1.8.4
Let σ ∈ Sn. Then, draw an arrow from i to σ(i) for each i ∈ {1, . . . , n}. The resulting
directed graph is a collection of disjoint cycles.

Theorem 1.8.5
In general, for σ ∈ Sn, |σ| is the least common multiple of all cycle lengths in the
cycle decomposition of σ.

Definition 1.8.6: Say that σ ∈ Sn is an m-cycle if its cycle notation has just one
cycle of length m (and all other cycles length 1).

We can also use this notation to calculate products (i.e., composition) of permutations. For
example, consider the case of (154)(23) ◦ (12345):3 since 1 7→ 2 in (12345) and then 2 7→ 3
in (154)(23), it must be the case that 1 7→ 3 in their composition. This general principle
can be applied repeatedly to calculate that

(154)(23) ◦ (12345) = (13)(2)(4)(5) = (13)

(1734) ◦ (56) = (1734)(56)

2It is a convention to remove 1-element cycles from the notation, just as a convenience. The order of
these cycles is not important, and σ could equivalently be written as σ = (65)(3417), or one of many other
possible combinations.

3σ ◦ τ means first τ , then σ

12
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where in the second example, composition is nothing more than concatenation since the
two permutations are non-overlapping. Such disjoint cycles always commute, but not all
permutations commute. For example, (12) ◦ (13) = (132) but (13) ◦ (12) = (123).

Theorem 1.8.7
Sn is nonabelian for n ≥ 3.

1.9 Homomorphisms and isomorphisms

1.9.1 Motivation

Consider the following groups:

1. (Z/2Z,+) = {0̄, 1̄}

• 0̄ + 0̄ = 0̄

• 0̄ + 1̄ = 1̄

• 1̄ + 0̄ = 1̄

• 1̄ + 1̄ = 0̄

2. S2 = {id, (12)}, with ◦:

• id ◦ id = id

• id ◦ (12) = (12)

• 12 ◦ id = (12)

• (12) ◦ (12) = id

3. A group (P,+) with elements P = {even, odd}, with + given by:

• even + even = even

• even + odd = odd

• odd + even = odd

• odd + odd = even

Are these groups all the same? Not exactly (they have different elements), but they are all
isomorphic. This is described formally in the next section.

1.9.2 Formal definitions and theorems

Definition 1.9.1: A homomorphism of groups (G, ∗) and (H, ·) is a map φ : G→
H such that for all g, g′ ∈ G, φ(g) · φ(g′) = φ(g ∗ g′). Equivalently, for all a, b, c ∈ G,
if a ∗ b = c, then also φ(a) · φ(b) = φ(c).

Example 9: Given groups G and H, there is always a homomorphism

φ : G→ H

g 7→ e (identity in h)

13
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Then φ is a homomorphism since φ(g1) · φ(g2) = φ(g1g2) = φ(e).

Definition 1.9.2: Let (G, ∗) and (H, ·) be groups. An isomorphism is a map φ :
G→ H such that the following are true:
• φ is a bijection.
• for all g, g′ ∈ G, φ(g) · φ(g′) = φ(g ∗ g′).

In this case, we say that G ∼= H. An isomorphism is a bijective homomorphism.

Example 10: Here are some examples of isomorphisms:

• G ∼= G via identity map.

• Consider the exponential function exp : R → R>0 bijection taking addition to multi-
plication: ex+y = exey. This yields the isomorphism (R,+) ∼= (R>0, ·).

Theorem 1.9.3
If G ∼= H and G is abelian, then H is abelian.

Lemma 1.9.4
Let φ : G→ H be a homomorphism. Then φ(eG) = eH .

Proof. Indeed, φ(eG) = φ(eGeG) = φ(eG)φ(eG). Given x ∈ H a group, x · x = x if and
only if x is the identity. Thus φ(eG) = eH .

Lemma 1.9.5
Let φ : G→ H be a homomorphism. Then for all a ∈ G, φ(a−1) = φ(a)−1.

Proof. Given a ∈ G, φ(eG) = φ(a · a−1) = φ(a)φ(a−1) = eH by the previous lemma.
Therefore, φ(a−1) = φ(a)−1.

1.9.3 Homomorphisms of Z

Let H be any group. What are the homomorphisms Z → H? We claim that given b ∈
H, there is a unique homomorphism φ : Z → H with φ(1) = b. This means that a
homomorphism Z→ H exists and is uniquely determined by the element it sends 1 to.

Theorem 1.9.6
Let H be any group. Then given an element b ∈ H, there exists a unique homomor-
phism φ from the additive group (Z,+) to H such that φ(1) = b.

14
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Proof. For uniqueness, if φ : Z → H with φ(1) = b, then φ(1 + 1) = φ(1)φ(1) = b2.
Continuing in this way, φ(1 + · · ·+ 1) = φ(1) · · ·φ(1) = bn. Furthermore, φ(0) = eH and
φ(−1) = b−1; as before, φ(−n) = b−n. Thus φ(n) = bn for all n ∈ Z. For existence, we’ll
show that the following is a homomorphism:

φ : Z→ H

n 7→ bn

Indeed, given x, y ∈ Z, then φ(x)φ(y) = bxby = bx+y = φ(x+ y) as desired.

2 Subgroups and generators

2.1 Subgroups

Definition 2.1.1: Let G be a group. A subset H ⊆ G is a subgroup of G if:
• H 6= ∅
• Given g1, g2 ∈ H, then g1g2 ∈ H.
• Given g ∈ H, g−1 ∈ H.

Equivalently, the operator on G restricts to an operation on H, and H is a group with
respect to this. Write H ≤ G if this is true.

Example 11: Here are some examples of subgroups (and non-subgroups):

1. The additive group 2Z = {. . . ,−2, 0, 2, . . .} is a subgroup of Z; this holds for any nZ.

2. Z≥0 = {0, 1, 2, . . .} ⊆ Z is not a subgroup since additive inverses do not exist.

3. For any group G, G and the trivial subgroup eG are always groups.

Lemma 2.1.2: Subgroup Criterion
Given a group G, say H ⊆ G for some nonempty subset H. Then H is a subgroup if
for all x, y ∈ H, xy−1 ∈ H.

Definition 2.1.3: Let G be a group. We define the center of G as

Z(G) = {g ∈ G : gx = xg for all x ∈ G}

If G is abelian, then Z(G) = G and conversely Z(G) = G =⇒ G is abelian.

Theorem 2.1.4
The center of a group is always a subgroup, i.e., Z(G) ≤ G for any G.

15
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Proof. Given x, y ∈ Z(G), we want to show that xy−1 ∈ Z(G). Namely, given z ∈ G, we
want (xy−1)z = z(xy−1). Indeed, since x, y commute with all members of G:

(xy−1)z = x(y−1z)

= (y−1z)x

= (z−1y)−1x

= (yz−1)−1x

= (zy−1)x

= z(y−1x)

= z(xy−1)

as desired. Hence, the center of a group is always a subgroup.

2.2 Generators

Definition 2.2.1: Let G be a group, and let S ⊆ G be any subset. Then the subgroup
generated by S, denoted 〈S〉, is the collection of all (finite) productsa of elements
in S and their inverses in G. If 〈S〉 = G, we say S generates G.

aWe say e is the product of exactly 0 elements.

Example 12: In Z, 〈1〉 = Z. Furthermore, 〈3, 4〉 = Z since 4 − 3 = 1, which has already
been shown to generate Z. However, 〈2〉 = 2Z does not generate Z. Notice that 〈a, b〉 = Z
if and only if a, b are relatively prime.

Theorem 2.2.2
The generated set 〈S〉 is a subgroup.

Theorem 2.2.3
The subgroup 〈S〉 is the smallest subgroup of G containing S.a

aThat is, for any subgroup H ≤ G such that S ⊆ H, then 〈S〉 ⊆ H.

Proof. Indeed, given a subgroup H ≤ G with S ⊆ H, then H must contain all products
of elements in S as well as inverses. Hence, 〈S〉 ⊆ H.

2.2.1 Properties of Z

Recall that Z = {. . . ,−2,−1, 0, 1, 2, . . .} is generated by a single element 〈1〉:

• Well-ordering principle - Every nonempty subset of Z>0 has a least element.

• For a, b ∈ Z, say a | b (“a divides b”) if b = ac for some c ∈ Z.

16
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• Given a, b ∈ Z−{0}, there exists a unique integer d ≥ 1 (called the greatest common
divisor) such that:

– d | a and d | b

– if e ∈ Z such that e | a and e | b, then e | d

We notate this as d = gcd(a, b) = (a, b).

• Given a, b ∈ Z − {0}, there exists a unique integer l ≥ 1 (called the least common
multiple) such that:

– a | l and b | l

– if m ∈ Z such that a | m and b | m, then l | m

We notate this as l = lcm(a, b) = [a, b].

Theorem 2.2.4
Given a, b ∈ Z, the product a · b = (a, b) · [a, b].

• Division algorithm - Given a, b ∈ Z − {0}, there exists unique q, r ∈ Z such that
a = bq + r and 0 ≤ r < b.

• Euclidean algorithm - repeated use of the division algorithm can be used to compute
the greatest common denominator. For example:

39 = 2(15) + 9

15 = 1(9) + 6

9 = 1(6) + 3

6 = 2(3) + 0

so we conclude that the greatest common denominator (39, 15) = 3.

Theorem 2.2.5
Given a, b ∈ Z− {0}, compute the following steps:

a = q0b+ r0 0 ≤ r0 < b

b = q1r0 + r1 0 ≤ r1 ≤ r0
r0 = q2r1 + r2 0 ≤ r2 ≤ r1

...
...

rk−2 = qkrk−1 + rk 0 ≤ rk ≤ rk−1
rk−1 = qk+1rk + 0

We make the following three claims about this algorithm:
1. The algorithm terminates.
2. rk = ma+ nb for some m,n ∈ Z
3. rk = (a, b)

17
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Proof. Indeed, we’ll show the three claims:
1. Suppose for the sake of contradiction that the algorithm doesn’t terminate.

Then the sequence r0 > r1 > r2 > · · · > 0 has no least element, violating the
well-ordering principle.

2. Working backwards along the Euclidean algorithm:

rk = rk−2 − qkrk−1
= rk−2 − qk(rk−3 − qk−1rk−2)

...

= am+ bn

where we reach the final form by iterating substitution until the beginning of
the algorithm.a

3. Note rk | rk−1 by the last equation. Also, rk | rk−2 by the second-to-last
equation. Iterating this process, we get r | a and r | b.
It remains to show that if s ∈ Z, s | a, and s | b, then s | r. Indeed, s | a and
s | b =⇒ s | (am+ bn) for m,n ∈ Z, so s | r by (2).

aAs an aside, we can use this to write 3 as a linear combination of 39 and 15:

3 = 9− 1(6)

= 9− 1(15− 9)

= 2(9)− 1(15)

= 2(39− 2 · 15)− 1(15)

This gives us 3 = 2 · 39− 5 · 15 as desired.

2.2.2 Cyclic groups

Definition 2.2.6: A group G is cyclic if it can be generated by a single element,
i.e., G = 〈x〉 for some x ∈ G. Then G = {xn : n ∈ Z}.

Here are some examples of cyclic groups (and non-cyclic groups):

• Z = 〈1〉 = 〈−1〉 is a cyclic group.

• Z/nZ = 〈1̄〉 is also a cyclic group.

• R/Z is not a cyclic group. However, a dense cover can be generated by an irrational
number. That is, for example, any element in R/Z is arbitrarily close to but not
confined in 〈π〉.

• D2n is not cyclic.

• Fix n ≥ 1. Then {z ∈ C : zn = 1} under multiplication is a cyclic group.

• There are no uncountable cyclic groups.
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Lemma 2.2.7
If H = 〈x〉, then |H| = |x| (i.e., if |x| =∞, then |H| =∞)

Proof. First, consider the case that |x| = n is finite. Then we claim that

H = {1, x, . . . , xn−1}

and these are all distinct. If instead xa = xb for some x ≤ a < b < n, then 1 = xb−a,
contradicting |x| = n. To show that H does indeed equal this set,a we need to show that
H ⊇ {1, x, . . . , xn−1} (the reverse direction is by definition). Indeed, given xt ∈ H for
some t ∈ Z, then by the division algorithm t = qn+ r for some 0 ≤ r < n. Then:

xt = xqn+r = xnqxr ∈ {1, . . . , xn}

Now, suppose |x| infinite. Then, we’ll claim {. . . , x−1, 1, x, x2, . . .} are all distinct. In-
deed, if xa = xb for a < b, then xb−a = 1 is a contradiction.

aIn general, to show that any two sets A and E are equal, it is standard to show that A ⊆ E and
E ⊆ A.

Lemma 2.2.8
Let G be any group, and x ∈ G. If xm = 1 and xn = 1, then x(m,n) = 1.

Proof. Let d = (m,n). Note that d = am+ bn for a, b ∈ Z. Then xd = xamxbn = 1.

Lemma 2.2.9
If xm = 1, then (|x|) | m.

Proof. Let n = |x|. We want to show that n | m. If m = 0, then indeed n | m. Otherwise,
let d = (m,n). Then by the previous lemma, xd = 1 so d ≥ n; hence d = n.

Theorem 2.2.10
Let G = 〈x〉 = {xk : k ∈ Z}. Then the following are true:

1. Let |G| = n. Then the map

ϕ : G→ Z/nZ
xk 7→ k̄

is well-defined and an isomorphism.
2. Let |G| =∞. Then the map

ϕ : G→ Z
xk 7→ k

is well-defined and an isomorphism.
This is equivalent to saying that every cyclic group is isomorphic to Z or some Z/nZ.
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Proof. Let H = {. . . , x−2, x−1, 1, x, x2, . . .}. Either every element in H is distinct, or
some xi = xj for i 6= j, which will result in a cyclic pattern. We’ll prove the theorem by
considering these two cases in turn:

1. (|G| = n) We claim that there exists n ≥ 1 such that xn = 1. Indeed, if a < b
with xa = xb then 1 = xb−a. Now, choose the smallest n with this property. We’ll
define the following map

ϕ : H → Z/nZ
xa 7→ ā

and claim that it is an isomorphism. To show this is well defined: given xa = xb,
we’ll show that ā = b̄. Assume so, and let xb−a = 1 where we posit b−a > 0 without
loss of generality. Then x(n,b−a) = 1 (since the gcd(c, d) is a linear combination of
integers c and d). Therefore, n ≤ (n, b−a), so n | b−a, and finally ā = b̄. To show
that ϕ is a homomorphism, consider the following derivation:

ϕ(xk · xl) = ϕ(xk+l)

= k + l

= k̄ + l̄

= ϕ(xk) · ϕ(xl)

Next, we’ll claim that ϕ is clearly a surjection of sets of order n. Finally, to show
injectivity: given a, b with ā = b̄, we want to show that xa = xb. Indeed, n | b− a,
so xa = xb by our choice of n.

2. (|G| =∞) We claim that the following map

ϕ : H → Z
xa 7→ a

is an isomorphism. Indeed, ϕ(xaxb) = ϕ(xa) + ϕ(xb), so this is a homomorphism.
Since there is a unique xa for each a ∈ Z, this map is surjective. Similarly, since
xa 6= xb where a 6= b, then this map is injective as well. Hence ϕ is a bijection and
a homomorphism and therefore an isomorphism.

Example 13: What are the cyclic subgroups of Z/12Z? We can check each of the twelve
elements, and see what subgroups they generate and if they are unique:

• 〈x1〉 = 〈x5〉 = 〈x7〉 = 〈x11〉

• 〈x2〉 = 〈x10〉

• 〈x3〉 = 〈x9〉

• 〈x6〉

• 〈1〉
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Theorem 2.2.11
Every subgroup of a cyclic subgroup is cyclic.

Proof. Let G = 〈x〉 be a cyclic group, and H ≤ G a subgroup. Now, consider the smallest
n ≥ 1 such that xn ∈ H. Then we claim H = 〈xn〉. We’ll show this in two parts:
• It follows that 〈xn〉 ⊆ H since H is a subgroup closed under the group operation.
• To show H ⊆ 〈xn〉, consider an element xa ∈ H. Then x(a,n) ∈ H =⇒ n | a, so

then xa ∈ 〈xn〉.
Since the sets are subsets of each other, it must be the case that H = 〈xn〉.

Theorem 2.2.12
Let H = 〈x〉 be a cyclic group of order n. Then xa generates H if and only if (a, n) = 1

2.3 Lattices of subgroups

Let G be a group, and say G is finite. The lattice of subgroups is a diagram of all subgroups
of G: if H < K is a proper subgroup and there are no subgroups properly between them,4

draw a line connecting H to K. For example, consider the diagram for Z/12Z ∼= H = 〈x :
x12 = 1〉.

Z/12Z

〈x2〉

〈x4〉

〈x12〉

〈x6〉

〈x3〉

1

2

4

12

6

3

For any Z/nZ, the graph of lattices is dual to the lattice of divisors of n, which is shown to
the right for n = 12 in the above figure.

Theorem 2.3.1
If H < K is a proper subgroup, and if x ∈ K −H and 〈H ∪{x}〉 = K, then there are
no subgroups properly between H and K.

4We say a subgroup X is properly between two groups H < K if H is a proper subgroup of X and X is
a proper subgroup of K.
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3 Group actions

3.1 Definition of a group action

Definition 3.1.1: A group action F of a group (G,×) on a set A is a function
F : G×A→ A satisfying two axioms:a

• For all g1, g2 ∈ G, a ∈ A, then F (g2, F (g1, a)) = F (g2g1, a).
• For all a ∈ A, F (eG, a) = a where eG is the identity element in G.

aThe function application will be F (g, a) for g ∈ G and a ∈ A. The textbook (Dummit and
Foote) writes g · a as notation for F (g, a).

Example 14: Here are some examples of group actions:

1. Let G = (R − {0},×) be a multiplicative group, and let A = R3. Define the group
action F to be scalar multiplication as follows:

F (r, (x, y, z)) = (rx, ry, rz)

Why is this a group action? We’ll check that the two axioms hold. Indeed, the
functions compose, i.e., for r, s ∈ G, then F (r, F (s, (x, y, z))) = (rsx, rsy, rsz).5 Fur-
thermore, F (1, (x, y, z)) = (1x, 1y, 1z) = (x, y, z) as desired.

2. Let G = Sn be the group of permutations on n elements. Then, let A = {1, 2, . . . , n}.
Define F : Sn ×A→ A by F (σ, j) = σ(j). This is also a group action.

3. Let G = {[ cos θ − sin θ
sin θ cos θ

]} under matrix multiplication be the group of rotation matrices

in the Euclidean two-dimensional plane. For brevity, we’ll write R(θ) = [ cos θ − sin θ
sin θ cos θ

].
This is a group because:

(a) Inverses - for any rotation R(θ), take R(−θ).

(b) Identity - let the identity R(0) = [ 1 0
0 1 ].

(c) Closure - for any R(α) and R(β), R(α)R(β) = R(α+ β).

Furthermore, this group inherits associativity from matrix multiplication.

3.2 Geometric rotations as group actions

Consider a geometric figure as a subset S ⊆ R2 in the real plane.

Definition 3.2.1: Given a set X, the power set P (X) is defined to be the collection
of all subsets of X.

5Using the textbook notation, we can write r · (s · (x, y, z)) = (rs) · (x, y, z).
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Let X = {1, 2, . . . , n}. Then P (X) has 2n elements, because for each element of X, it
can either be included or not be included in a given subset of X. For example, we have
{1, 2} ∈ P (X), ∅ ∈ P (X), and so on.

Now, let’s define a group action on the power set. Define F : G × P (R2) → P (R2) by
F (M,S) = M(S) where M is the rotation matrix M ∈ G and S is our geometric figure in
R2. Note that M(S) = {Ms ∈ R2 : s ∈ S}.

To see what this looks like, let R(π2 ) = [ 0 −11 0 ]. This will rotate S ⊆ R2 counterclockwise by
π/2. Exercise: check that this is a group action.

3.3 Permutations and group actions

Theorem 3.3.1
Let a group G act on a set A via the group action F . Then, define σg by a 7→ F (g, a).
We claim that this σg is a permutation in SA.

Proof. We need to show that σg : A → A is both injective and surjective. Indeed, to
show injectivity, take any a1, a2 ∈ A. Suppose σg(a1) = σg(a2). Then:

a1 = e · a1
= (g−1g) · a1
= g−1 · (g · a1)

= g−1 · (g · a2)

= (g−1g) · a2
= a2

This is sufficient to show injectivity, since σg(a1) = σg(a2) =⇒ a1 = a2. Next up,
we’ll show surjectivity. Take any element a ∈ A; then, we want to find a′ ∈ A such that
σg(a

′) = a. Consider g−1 · a ∈ A; then g · (g−1a) = (gg−1) · a = a. Thus, σg as defined
above is both surjective and injective, and therefore bijective. Woohoo!

You can find some of the algebraic structure of G in SA; specifically, the homomorphism
is preserved. This is defined formally in the following theorem. Note that this does not
necessarily preserve injectivity.

Theorem 3.3.2
Let (G,×) act on a set A, such that the group action is defined as follows:

ϕ : G→ SA

g 7→ σg

where σg is defined as in Theorem 3.3. Then ϕ is a homomorphism.
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Proof. Consider any two elements g1, g2 ∈ G. We need to check that ϕ(g1)ϕ(g2) =
ϕ(g1g2). Indeed, for any a ∈ A, we have

σg1σg2(a) = σg1(σg2(a))

= g1 · (g2 · a)

= (g1g2) · a
= σg1g2(a)

Thus ϕ(g1)ϕ(g2) = ϕ(g1g2) as desired.

4 Quotient groups

4.1 Fibers and cosets

Definition 4.1.1: The image of ϕ is im(ϕ) = {ϕ(g) : g ∈ G}.

Definition 4.1.2: The kernel of ϕ is ker(ϕ) = {g ∈ G : ϕ(g) = 1H}.

Theorem 4.1.3
Let ϕ : G→ H be a group homomorphism. Then ker(ϕ) ≤ G is a subgroup.

Proof. Note that ϕ(1G) = ϕ(1H), so 1G ∈ ker(ϕ). Now, given x, y ∈ ker(ϕ), check
that xy−1 ∈ ker(ϕ) by the subgroup criterion. Indeed, since ϕ is a homomorphism,
ϕ(xy−1) = ϕ(x)ϕ(y)−1 = 1H(1H)−1 = 1H .

Theorem 4.1.4
Let ϕ : G→ H be a group homomorphism. Then im(ϕ) ≤ H is a subgroup.

Definition 4.1.5: Let ϕ : G → H be a homomorphism. Then given h ∈ im(ϕ), we
say the fiber over h is

ϕh = {g ∈ G : ϕ(g) = h}

For example, ϕ1H = ker(ϕ). The fibers of ϕ partition G, i.e., every element of G is in exactly
one fiber. We’ll see this again with left and right cosets of a subgroup.

Definition 4.1.6: Let ϕ : G→ H be a group homomorphism. Then define G/ker(ϕ)
to have elements as the fibers of ϕ. Then we define ϕh · ϕh′ = ϕhh′ to be the group
operation.

Note that G/ker(ϕ) ∼= im(ϕ).
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Definition 4.1.7: Let H be any subgroup of G. Then the left cosets of H are
subsets of the form gH = {gh : h ∈ H}. The right cosets of H are subsets of the
form Hg = {hg : h ∈ H}.

Further, remark that H = 1H is a left coset, but it’s the only left coset that’s a subgroup
because it is the only one containing the identity element 1 ∈ G. Similarly, H = H1 is the
only right coset that is a subgroup.

Example 15: Let G = D8 be the group of symmetries of a square with the following eight
elements: {1, r, r2, r3, s, sr, sr2, sr3}. Furthermore, let H = {1, r, r2, r3} be the subgroup of
rotations. The left cosets are as follows:

• H = {1, r, r2, r3}

• rH = {r, r2, r3, 1}

• r2H = {r2, r3, 1, r}

• r3H = {r3, 1, r, r2}

• sH = {s, sr, sr2, sr3}

• srH = {sr, sr2, sr3, s}

• sr2H = {sr2, sr3, s, sr}

• sr3H = {sr3, s, sr, sr2}

Of these left cosets, only two (H and sH) are distinct. Note that the left cosets of H
partition G, since every element of G is contained in exactly one of H and sH.

Theorem 4.1.8
The left cosets of H partition G.a

aThe right cosets behave similarly, but there is no guarantee that the partitions are the same.

Proof. Given g ∈ G, note that g = g1 ∈ gH, so every element of G appears in at least
one left coset of H. Now, we need to show that these cosets are disjoint. To prove this,
suppose g ∈ g′H. Then, it suffices to show that gH = g′H. Indeed, let g = g′h′ for some
h′ ∈ H. Then:

gH = {gh : h ∈ H}
= {g′h′h : h ∈ H}
= g′H (since h′H = H by closure and inverses)

Therefore, the left cosets of H are indeed distinct.

Theorem 4.1.9
Let ϕ : G→ H be a homomorphism. For g ∈ G, let h = ϕ(g). Then:

ϕh = gK = Kg

where K = ker(ϕ).
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Lemma 4.1.10
Given a subgroup H ≤ G, there is a bijection from H → gH for any g ∈ G.a

aSimilarly for the right coset Hg.

Proof. Consider the following map (not necessarily a homomorphism):

f : H → gH

h 7→ gh

Indeed, f is a bijection from H to gH as defined above.

Corollary 4.1.11: Lagrange’s Theorem
Let G be a finite group, with subgroup H ≤ G. Then |H| divides |G|.

Proof. G is partitioned into cosets H, g2H, . . . , gkH for some g2, . . . , gk. We write

|G| = |H|+ |g2H|+ · · ·+ |gkH|
= |H|+ · · ·+ |H|
= k|H|

so indeed the order of G is a multiple of |H|.

Definition 4.1.12: A subgroup N of G is normal if gN = Ng for all g ∈ G. In
this case, we write H E G.

Example 16: If G abelian, then any subgroup of G is normal. However, is the reverse
statement true? No, consider H = {1, r, r2, r3} ≤ D8 as discussed in Example 15. H is
normal in G, but we know that G = D8 is not abelian since rs 6= sr, for example.

To see an example of a non-normal subgroup, consider H ′ = 〈s〉 = {1, s} ≤ D8. The left
and right cosets of H ′ are as follows:

• H ′ = {1, s}

• rH ′ = {r, sr3}

• r2H ′ = {r2, sr2}

• r3H ′ = {r3, sr}

• H ′ = {1, s}

• H ′r = {r, sr}

• H ′r2 = {r2, sr2}

• H ′r3 = {r3, sr3}

Indeed, these left and right cosets are not the same, so H ′ is not a normal subgroup of G.
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4.2 Conjugacy and normality

Definition 4.2.1: An automorphism of G is an isomorphism G→ G.

Definition 4.2.2: Let G be a group with element g ∈ G. Then conjugation by g is
the following automorphism:

ϕ : G→ G

x 7→ gxg−1

Proof. We’ll show that ϕ (conjugation) is indeed an isomorphism in three steps:
i. To show that ϕ is a homomorphism:

ϕ(xy) = gxyg−1

= gxg−1gyg−1

= ϕ(x)ϕ(y)

ii. To show that ϕ is injective, take x, y ∈ G such that gxg−1 = gyg−1. Then we have
x = y as desired.

iii. To show that ϕ is surjective, let y ∈ G, and note ϕ(g−1yg) = g(g−1yg)g−1 = y.

Definition 4.2.3: Two elements x, y ∈ G are conjugates if y = gxg−1 for some
g ∈ G.

Theorem 4.2.4
Conjugacy is an equivalence relation on G.

Proof. By the definition of equivalence relations:
i. Reflexive - g = 1g1−1 for all g ∈ G.

ii. Symmetric - say y = gxg−1. Then g−1yg = x, so this relation is symmetric.
iii. Transitive - say y = gxg−1 and z = hyh−1 for some g, h ∈ G. Then z =

h(gxg−1)h−1 = (hg)x(hg)−1 as desired.

Definition 4.2.5: Let G be a group. The conjugacy classes of G are the equivalence
classes under the relation of conjugacy.

Example 17: For example, consider the conjugacy classes of D8:

• {1} as the identity

• {r2} since sr2s−1 = r2ss−1 = r2
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• {r, r3} since srs−1 = r3ss−1 = r3

• {s, sr2} by similar reasoning

• {sr, sr3} by similar reasoning

Theorem 4.2.6
Let N ≤ G be a subgroup. Then N is normal if and only if gNg−1 = N for all g ∈ G,
where we define gNg−1 := {gng−1 : n ∈ N}.

Proof. Let N ≤ G. Then by definition, N is normal iff gN = Ng for all g ∈ G.
Multiplying by g−1 on both sides gives gNg−1 = N as desired.

Equivalently, N ≤ G is normal iff it is a union of conjugacy classes. We can see this by
examining unions of the conjugacy classes of D8 as defined in Example 17.

Theorem 4.2.7: Normality Criterion
If N ≤ G and gNg−1 ⊆ N for all g ∈ G, then N is normal.

Proof. We want to show that for all g ∈ G, then N ⊆ gNg−1. Indeed, given n ∈ N ,
write n = g(g−1ng)g−1 and note that g−1ng ∈ g−1Ng ⊆ N by applying the hypothesis
to g−1.

Lemma 4.2.8
Let H ≤ G be any subgroup of G. Given g, g′ ∈ G, then gH = g′H iff g′ ∈ gH.

Proof. ( =⇒ ) Since gH = g′H, then g′ = g′ · 1 ∈ g′H = gH since 1 ∈ H.
(⇐= ) Choose g′ ∈ gH ∪ g′H, so gH = g′H since left cosets partition G.

4.3 Quotients

Definition 4.3.1: Let G be a group and N E G a normal subgroup. The quotient
group G/N has the left cosets of N as its elements; further, the binary operation is
given as:

(gN)(hN) = (gh)N

Theorem 4.3.2
The binary operation on quotients is well-defined and produces a group.
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Proof. To show well-definedness, suppose gN = g′N and hN = h′N . Then, we want
to show that (gh)N = (g′h′)N . We have g′ ∈ gN and h′ ∈ hN by the lemma, i.e.,
g′ = g · n1 and h′ = h · n2 for n1, n2 ∈ N . Again by the lemma, it suffices to show that
g′h′ ∈ (gh)N . Indeed:

g′h′ = g(n1h)n2

= g(hn′1)n2 for some n′1 ∈ N

since N normal (so Nh = hN). Therefore, g′h′ = ghN as desired. Now, we want to
show that G/N is a group. We’ll check the three group axioms:
• Associativity - by associativity in G and multiplication of left cosets:

(g1Ng2N)g3N = (g1g2N)(g3N)

= (g1g2)g3N

= g1(g2g3)N

= g1N(g2Ng3N)

• Existence of identity - the identity element is N . Indeed, we can check this as
follows: N · gN = (1g)N = gN = gN ·N .

• Existence of inverses - (gN)(g−1N) = (g−1)(gN) = N as desired.
Hence, G/N with the defined binary operation (gN)(hN) = (gh)N is indeed a group.

Example 18: Let G = Z, so every subgroup of G is normal. In fact, every subgroup
is of the form N = nZ = {. . . ,−2n,−n, 0, n, 2n, . . .}. The cosets of nZ are {0 + nZ, 1 +
nZ, . . . , (n− 1) +nZ}, i.e., the elements of Z/nZ. 6 For example, the cosets of 5Z are listed
below:

• 0 + 5Z

• 1 + 5Z

• 2 + 5Z

• 3 + 5Z

• 4 + 5Z

which are precisely the elements of Z/5Z with addition: (a+ 5Z) + (b+ 5Z) = (a+ b) + 5Z.
That is, we wrote ā+ b̄ = a+ b.

Theorem 4.3.3
Let ϕ : G→ H be a homomorphism, and K = kerϕ = {g ∈ G : ϕ(g) = 1H}. Then:

i. K E G
ii. The left (equivalently, right) cosets of K are the fibers of ϕ.

Proof. This follows from the Normality Criterion:
i. Given x ∈ K and g ∈ G, we want to show that gxg−1 ∈ K. Indeed, ϕ(gxg−1) =
ϕ(g)ϕ(x)ϕ(g)−1 = 1H , so gxg−1 ∈ K as desired.

ii. Given g ∈ G, let h = ϕ(g). We need to show that gK = Kg = ϕh. Indeed, given
x ∈ K, ϕ(gx) = ϕ(g)ϕ(x) = ϕ(g) = h. So gK ⊆ ϕh. The reverse inclusion is similar.

6In additive notation, cosets are often denoted g +N or N + g.
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Given N E G, there is a natural projection given by the following:

π : G→ G/N

g 7→ gN

Note that π(gg′) = (gg′)N = (gN)(g′N) = π(g)π(g′). Furthermore, kerπ = N . Remark
that a subgroup N ≤ G is normal if it is the kernel of some homomorphism G→ H from G
to some arbitrary group H. This is stated formally below.

Theorem 4.3.4: First Isomorphism Theorem
If ϕ : G→ H is a homomorphism, then G/ kerϕ ∼= imϕ.

Proof. Define a homomorphism G/ kerϕ→ imϕ by g(kerϕ) = ϕ(g). Showing that this
homomorphism is an isomorphism is left as an exercise to the reader.

Definition 4.3.5: Let H ≤ G be any subgroup. Write |G : H| for the index of H,
i.e., the number of left cosets of H in G.a

aOr, equivalently, the number of right cosets.

Note that if N E G, then |G/N | = |G : N | by Lagrange’s Theorem. Let N E G: how does
the lattice of subgroups of G/N compose to that of G?

For example, let G = Z and N = 12Z = {. . . ,−12, 0, 12, . . .}. Then, consider the lattice of
subgroups for Z and the lattice of subgroups for Z/12Z:

Z

2Z 3Z 5Z 7Z · · ·

4Z 6Z 9Z 10Z

8Z 12Z · · ·

Z/12Z

2Z/12Z

4Z/12Z

12Z/12Z

6Z/12Z

3Z/12Z

Lemma 4.3.6
Let K ≤ G with N E K. Then K is a union of cosets of N .

Proof. Given n ∈ N and x ∈ K, we have xnx−1 ∈ N since x ∈ G and N normal. Then,
K/N = {kN : k ∈ K} is a group, and we claim K/N ≤ G/N . The group structure on
K/N comes from that of G/N .

Theorem 4.3.7: Third Isomorphism Theorem
Say N E G, K E G, and N ≤ K. Then K/N E G/N and (G/N)/(K/N) ∼= G/K.
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Proof. First, we’ll show that K/N E G/N . Given kN ∈ K/N and gN ∈ G/N . We want
to show that (gN)(kN)(gN)−1 ∈ K/N . Indeed, (gN)(kN)(gN)−1 = (gkg−1)N ∈ K/N
by normality of K in G.
To show that (G/N)/(K/N) ∼= G/K, we’ll use the first isomorphism theorem. Indeed,
let’s define the following map and show it’s a homomorphism as follows:

ϕ : G/N → G/K

gN 7→ gK

First, check that ϕ is well-defined as follows: given gN = g′N , we want to show gK =
g′K. Indeed, g′ ∈ gN ⊆ gK, so gK = g′K as desired. Next, we’ll check that ϕ is a
homomorphism:

ϕ(gNg′N) = ϕ((gg′)N)

= gg′K

= gKg′K

= ϕ(gN)ϕ(g′N)

Now, we’ll show that ϕ is surjective. Indeed, given any element of gK ∈ G/K for some
g ∈ G, note that ϕ(gN) = gK. Showing this is surjective means that imϕ = G/K.
Finally, note that kerϕ = {gN : gK = K} = {gN : g ∈ K} = K/N . Applying the first
isomorphism theorem gives (G/N)/(K/N) ∼= G/K.

Example 19: For example, we’ll show that Z/3Z ∼= (Z/6Z)/(3Z/6Z). Indeed, consider the
elements of these sets:

• Z/6Z = {6Z, 1 + 6Z, 2 + 6Z, 3 + 6Z, 4 + 6Z, 5 + 6Z}

• 3Z/6Z = {6Z, 3 + 6Z}

Then, say any two elements x, y ∈ Z/6Z are equivalent iff x− y ∈ 3Z/6Z. The equivalence
classes on this relation are precisely the elements of Z/3Z:

• 6Z + 3Z/6Z = 3 + 6Z + 3Z/6Z = {6Z, 3 + 6Z}

• 1 + 6Z + 3Z/6Z = 4 + 6Z + 3Z/6Z = {1 + 6Z, 4 + 6Z}

• 2 + 6Z + 3Z/6Z = 5 + 6Z + 3Z/6Z = {2 + 6Z, 5 + 6Z}

Theorem 4.3.8: Fourth Isomorphism Theorem (Lattice Isomorphism)
Let N E G. There is a bijective map

Φ : {subgroups of G containing N} → {subgroups of G/N}
H 7→ H/N

It is inclusion preserving and normality preserving. That is, K E G iff K/N E G/N ,
and in this case (G/N)/(K/N) ∼= G/K.
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Proof. We’ll construct an inverse to Φ. Given H̄ ≤ G/N , let H = {g ∈ G : gN ∈ H̄}.
Claim that H is a subgroup, and H/N = H̄. To show this is inclusion-preserving, show
that if H ≤ H ′ then H/N ≤ H ′/N .

Theorem 4.3.9: Second Isomorphism Theorem
Let G be a group, with subgroups A,N ≤ G. Then define the subset

AN = {an : a ∈ A,n ∈ N}

which need not be a subgroup. Then, if A ≤ G and N E G:
i. AN ≤ G

ii. AN/N ∼= A/A ∩N
Further, remark that AN =

⋃
a∈A aN .

Proof. First, we’ll show that AN is a subgroup. Indeed, 1 ∈ AN . Given a1, a2 ∈ A and
n1, n2 ∈ N , then we want to show

(a1n1)(a2n2)−1 ∈ AN

Indeed, (a1n1)(a2n2)−1 = a1(n1n
−1
2 a−12 ) = a1a

−1
2 n for some n ∈ N (since a−12 N =

Na−12 ). So (a1n1)(a2n2)−1 ∈ AN .
For the second part of this theorem, we’ll use the first isomorphism theorem. Say:

ϕ : A→ AN/N

a 7→ aN

is a surjective homomorphism (proof as exercise). Then, kerϕ = {a ∈ A : aN = N} =
A ∩N . So we’re done by the first isomorphism theorem.

4.4 Composition series and the Jordan Holder Theorem

For the sake of analogy, recall prime factorization in Z: given n ∈ Z with n > 1, then n
has a factorization pα1

1 · p
α2
2 · · · p

αk

k where pi 6= pj if i 6= j; this factorization is unique up to
reordering of the prime powers.

Theorem 4.4.1
mn = gcd(m,n) · lcm(m,n) for m,n ≥ 1

Definition 4.4.2: A nontrivial group G is simple if 1, G are the only normal sub-
groups of G.

Example 20: Z/pZ is simple for p prime.
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Definition 4.4.3: Let G be a nontrivial group. A composition seriesa for G is

1 = N0 E N1 E N2 E · · · E Nk = G

where Ni ≤ G are subgroups and each quotient Ni+1/Ni is simple for i = 0, . . . , k−1.b

aWarning: Ni need not be normal in G.
bSaying thatNi+1/Ni is simple is equivalent to saying that there are no normal subgroups between

Ni and Ni+j . This is a consequence of the fourth isomorphism theorem.

Definition 4.4.4: Given a composition series N0, . . . , Nk, the factors are the quo-
tients Ni+1/Ni for i = 0, . . . , k − 1.

Example 21: In the dihedral group D8, the composition series is as follows:

{1} E {1, s} E {1, s, sr2, r2} E D8

What are the factors? They are all cyclic of order 2, i.e., Z/2Z. However, this is not the
only possible example. We can also have the following composition series:

{1} E {1, r2} E {1, r, r2, r3} E D8

which has the same factors as the previous composition series.

Theorem 4.4.5: Jordan Holder Theorem
Let G be a nontrivial finite group. Then:

i. G has a composition series.
ii. Any two composition series for G will have the same factors up to reordering.

(Note that the factors don’t determine the group.)

Proof. To show that every nontrivial finite group has a composition series, use strong
induction on |G|. First, show the statement is true when |G| = 2. Then we show that if
the statement is true for all |G| < n, then it’s also true for |G| = n. Then the statement
is true for all |G| ≥ 2.
Indeed, if |G| = 2, then G is simple, so it has a composition series 1 E G. Now, let
|G| = n: if G is simple, we’re done. Therefore, assume there exists some N such that
1 E N E G. Note that N and G/N have order smaller than G, so by the inductive
hypothesis, there exists a composition series

1 E N1 E · · · E Nk = N

and there exists a composition series 1 E Nk+1/N E Nk+2/N E · · · E G/N . So by the
fourth isomorphism theorem, we write:

1 E · · · E N E Nk+1 E Nk+2 E · · · E G

is a composition series for G as desired. (The second part of this theorem is left as an
exercise to the reader.)
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4.4.1 Alternating groups

Definition 4.4.6: Let n ≥ 1. Given the set of descents

S = {(i, j) : 1 ≤ i < j ≤ n, σi > σj}

Then the sign of a permutation σ ∈ Sn is (−1)|S|.

Example 22: Let’s choose an element of S5. Namely, let:

σ =

(
1 2 3 4 5
1 4 3 2 5

)
Then |S| = 3 is the number of descents of σ, so sgn(σ) = (−1)3 = −1.

Theorem 4.4.7
Every σ ∈ Sn can be written as a product of transpositions (i.e., 2-cycles).

Consider the “physical proof” of the above theorem. Given a number of elements in any
order, you can swap pairs of them until you reach the desired order.

Theorem 4.4.8
If sgn(σ) = 1, then any expression of σ as a product of transpositions contains an
even number of transpositions. If sgn(σ) = −1, then σ is a product of an odd number
of transpositions.

Proof. Suppose τ is an adjacent transposition
(
i i+ 1

)
. Then sgn(σ) = − sgn(τ · σ).

But now, suppose τ is any transposition: then it can be written as an odd number of
adjacent transpositions. Hence sgn(σ) = − sgn(τ · σ) for the general case.

Corollary 4.4.9
sgn : Sn → {±1} is a (surjective) homomorphism.

Definition 4.4.10: An = ker(sgn) = {σ ∈ Sn : sgn(σ) = 1}

Theorem 4.4.11
Ai is simple for i ≥ 5.
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5 Product groups

Definition 5.0.1: Let G1 and G2 be groups. Define the product

G1 ×G2 = {(g1, g2) : g1 ∈ G1, g2 ∈ G2}

with binary operation (g1, g2) · (g′1, g′2) = (g1g
′
1, g2g

′
2). This is a group.

Example 23: R×R = R2 from HW 1. This can be extended to show that Rn = R×· · ·×R
(n times). Note that |G1 × · · · ×Gn| = |G1| · · · |Gn|.

For example, consider the product Z/2Z × Z/3Z = {(0̄, 0̄), (0̄, 1̄), (0̄, 2̄), (1̄, 0̄), (1̄, 1̄), (1̄, 2̄)}.
Claim that this is isomorphic to Z/6Z:

Z/6Z Z/2Z Z/3Z
0̄ 0̄ 0̄
1̄ 1̄ 1̄
2̄ 0̄ 2̄
3̄ 1̄ 0̄
4̄ 0̄ 1̄
5̄ 1̄ 2̄

Theorem 5.0.2
Given G1, G2, there are natural projection homomorphisms

π1 : G1 ×G2 → G1, π2 : G1 ×G2 → G2

where π1(g1, g2) = g1 and π2(g1, g2) = g2. Then given homomorphisms ϕ1 : G→ G2,
ϕ2 : G → G2, there exists a unique homomorphism ϕ : G → G1 × G2 making the
following diagram commute:

G G2

G1 G1 ×G2

ϕ2

ϕ1
ϕ

π2

π1

In other words, π1ϕ = ϕ1 and π2ϕ = ϕ2.

We can apply this theorem to the previous example. Consider the following projection maps:

ϕ1 : Z/6Z→ Z/2Z
ϕ2 : Z/6Z→ Z/3Z

Let ϕ : Z/6Z→ Z/2Z× Z/3Z. In fact, the unique such map is ϕ(g) = (ϕ1(g), ϕ2(g)) Then
we claim that ϕ is an isomorphism:

• Injectivity - from the table above, the kernel has a single element 0̄.
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• Surjectivity - follows because the function is injective and maps from finite equal
cardinalities.

• Homomorphism - we defined ϕ as such.

Theorem 5.0.3: Chinese Remainder Theorem
Suppose n1, . . . , nk ≥ 1 are pairwise relatively prime. Then if N =

∏
ni, we have

Z/NZ ∼= Z/n1Z× · · · × Z/nkZ

Example 24: As an exercise: how many students (n) are present in abstract algebra?

n ≡ 4 (mod 5)

n ≡ 3 (mod 7)

Theorem 5.0.4: Fundamental theorem of finitely generated abelian groups
Let G be a finitely generated abelian group. Then:

G ∼= Zr × Z/n1Z× · · · × Z/nsZ

where r ≥ 0 and n1, . . . , n2 ≥ 2 with ns | ns−1 | · · · | n1. Moreover, this expression
for G is unique.

Note that the torsion quotient must be isomorphic to Zr. Up to isomorphism, the finite
abelian groups of order M are in bijection with sequences ns | ns−1 | · · · | n1.

Example 25: The abelian groups of order 8 are (up to isomorphism):

Z/8Z Z/4Z× Z/2Z (Z/2Z)3

Note that G×H ∼= H ×G. The proof of this is left as an exercise to the reader.

Theorem 5.0.5
If G1, G2 are groups, then G1

∼= {(g1, 1) : g1 ∈ G1} ≤ G1 ×G2. Similarly for G2.

Corollary 5.0.6
G1, G2 ≤ G1 ×G2 via the theorem above.

Moreover, there exists H1, H2 ≤ G1 × G2 with G1
∼= G1 and H2

∼= G2. Note also that
H1 ∩H2 = 1 and H1H2 = G1 ×G2. Additionally: H1, H2 E G1 ×G2.

Theorem 5.0.7
Let G be a group, with H,K E G. If H ∩K = 1 and HK = G, then G ∼= H ×K.

36



Nicholas Tomlin MATH 1530: Abstract Algebra

Proof. Let’s define the following function and claim that it is an isomorphism:

α : H ×K → G

(h, k) 7→ hk

First, we’ll check that α is a homomorphism. Given two elements (h1, k1), (h2, k2) ∈
H ×K, we can perform the following derivation:

α((h1, k1) · (h2, k2)) = α((h1h2, k1k2))

= h1h2k1k2

= h1k1h2k2

= [α(h1, k1)] · [α(h2, k2)]

Note that this requires hk = kh for all h ∈ H, k ∈ K. Indeed, this is true because
hkh−1k−1 ∈ H ∩K = 1.
Next, we’ll check that α is injective, i.e., h ∈ H and k ∈ K such that hk = 1, we want
to show that h = k = 1. Indeed, h = k−1 ∈ H ∩K = 1, and k = 1 by similar reasoning.
Finally, surjectivity follows from HK = G.

Example 26: R× ∼= R>0 × {±1} via the above theorem.

5.1 Semidirect products

Recall the can of beans from early lectures. Let R denote the symmetry group of the can.
Can we say that R ∼= R/2πZ× {±1}? No, we can’t, because R is nonabelian. However, we
can say that R ∼= R/2πZ o {±1} as follows:

Definition 5.1.1: Let H,K be groups and ϕ : K → Aut(H) a homomorphism. We
define the semidirect product group as follows:

G = H oϕ K

with elements {(h, k) : h ∈ H, k ∈ K} and operation (h1, k1) · (h2, k2) = (h1(k1 ·
h2), k1k2) where (k1 · h2) is the action of k1 on h2 via ϕ. More precisely, k1 · h2
means ϕ(k1)(h2).

As an exercise, check that this is a group! Part of the proof is shown below:

Lemma 5.1.2
Inverses exist in the semidirect product group.
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Proof. Given an element (h, k), we’ll say the inverse is (k−1h−1, k−1). Indeed:

(h, k) · (k−1h−1, k−1) = (h · k(k−1h−1), kk−1)

= (hh−1, kk−1)

= (1, 1)

so inverses exist as desired. The rest of the proof that the semidirect product is a group
is omitted.

Example 27: Returning to the can of beans, let G = R/2πZ and K = {±1}. Consider

ϕ : K → Aut(R/2πZ)

1 7→ id : H → H

−1 7→ neg : H → H

Claim that R ∼= R/2πZ oϕ {±1}, e.g., (θ,−1) · (θ′, 1) = (θ − θ′,−1).

Remark that H̃ = {(h, 1) : h ∈ H} E H oϕ K and K̃ = {(1, k) : k ∈ K} ≤ H oϕ K but is
not necessarily normal. Further, note:

(1, k) · (h, 1) · (1, k)−1 = (1(k · h), k) · (1, k−1)

= ((k · h)(k · 1), kk−1)

= (k · h, 1)

so the group action is related to conjugation. We can see this in the following example.

Example 28: For instance, D2n
∼= Z/nZ o Z/2Z ∼= {1, r, . . . , rn}o {1, s}.

Theorem 5.1.3
Let G be a group with H E G and K ≤ G. If H ∩ K = 1 and HK = G, then
G ∼= H oϕ K with

ϕ : K → Aut(H)

k 7→ Ψk : H → H with Ψk(h) = khk−1 (“the conjugation-by-k automorphism”)
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Proof. Consider the following map, which we’ll claim is an isomorphism:

α : H oK → G

(h, k) 7→ hk

To check that α is a homomorphism, do the following work:

α((h1, k1) · (h2, k2)) = α(h1(k1 · h2), k1k2)

= α(h1(k1h2k
−1
1 ), k1k2)

= h1(k1h2k
−1
1 )k1k2

= h1k1h2k2

= α(h1, k1) · α(h2, k2)

as desired. We have shown that α is injective and surjective in similar proofs.

Example 29: Let’s return to D2n. We’ll say H = {1, r, . . . , rn−1} E D2n, and say K =
{1, s}. Note that H ∩K = 1, HK = D2n. Finally, ϕ (as in the proposition) is given by

s 7→ Ψs : H → H

ri 7→ sris−1 = r−i

Then we have that D2n
∼= H oϕ K as stated in the proposition above.

5.1.1 Affine transformations

Let G be the group of invertible affine transformations of R2, i.e., maps R2 → R2 expressible
as

x 7→ Ax+ v

for A ∈ GL2(R) and v ∈ R2 with composition as the group operation. Let f(x) = Ax + v
and g(x) = Bx+ w. Then (f ◦ g)(x) = A(Bx+W ) + v = ABx+ (Aw + v).

Note that R2 oϕ GL2(R) ∼= G where ϕ is the natural action of GL2(R) on R2. As an
exercise, consider G as an internal7 semidirect product group, using propositions in the last
subsection.

7i..e, as a product of two subgroups congruent to GL2(R),R2
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5.2 Sylow theorems

Definition 5.2.1: Suppose G is a group of order pα ·m for a prime p with p 6 | m. A
Sylow p-subgroup of G is a subgroup of order pα. Then, let

Sylp(G) = {Sylow p-subgroups}

and np := |Sylp(G)|.

Theorem 5.2.2
Given a group G of order pα ·m with p 6 | m, then np ≡ 1 (mod p) and np | m. In
particular, Sylow p-subgroups always exist.

Theorem 5.2.3
Given a group G of order pα ·m with p 6 | m, any two Sylow p-subgroups H and H ′

are conjugates (meaning gHg−1 = H ′ for some g ∈ G).

Corollary 5.2.4
Given a subgroup of G of order pβ for some β ≤ α and a Sylow p-subgroup K of G,
then H is a subgroup of some conjugate of K.

Example 30: Let’s show that Z/10Z and D10 are the only groups of order 10 up to
isomorphism. Let G be a group with |G| = 10, so the Sylow p-subgroups must have orders
2 or 5 (the divisors of 10).

Note that n5 ≡ 1 (mod 5) and n5 | 2, so n5 = 1. Thus N E G has order 5. Similarly, n2 ≡ 1
(mod 2), and n2 | 5, so n2 = 1 or 5. Indeed, if n2 = 1, then H E G has order 2. Then:

G ∼= H ×N ∼= Z/2Z× Z/5Z ∼= Z/10Z

by the Chinese Remainder Theorem. In the other case where n2 = 5, then let H ≤ G
have order 2. Then G is a semidirect product N oϕ H for some ϕ. Note that ϕ : Z/2Z →
Aut(Z/5Z). The only order 2 automorphisms of Z/5Z are id and neg. If ϕ(1̄) = id, then
G = N ×H ∼= Z/10Z. On the other hand, if ϕ(1̄) = neg, then G ∼= D10.
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